Network effects and Cournot competition

Rabah AMIR (University of Iowa)

Co-authors: Igor Evstigneev (U Manchester)
Adriana Gama (Col Mex)
March 2019

Main Points

- Consider 2 models: Industry-wide and firm-specific networks
- Stress differences between network and regular industries
- Formalize industry viability (network industry take off) and show that it is enhanced with more firms
- Study effects of market structure on performance
- Revise notion of free entry equilibrium to get a unique solution
- Closed-form examples with multiple equilibria
- Policy insights: Antitrust (allow some inter-firm coordination)
- Use lattice-theoretic methods, deal with multiple equilibria

Related Studies

- Veblen (1899)
- Leibenstein (QJE 1950), Rohlffs (Bell J. 1973), Economides
- Rohlffs (2001): book on history of network industries
- Katz and Shapiro (AER, 1985)

"Network externalities, competition and compatibility"

Key issues with past work

- Little attention to generality and robustness of results
- No formal modeling of industry viability (or take off) issue, though this is often discussed
- Little attention to free entry in network industries
- Distinguish pure and mixed network goods

Model, Equ Concept and Assumptions

- n identical firms sell a homogeneous and fully compatible good
- The profit function of a firm is (S is expected network size)

$$\pi(x, y, S) = x[P(x + y, S) - c]$$

or

$$\widetilde{\pi}(Z, y, S) = (Z - y)[P(Z, S) - c]$$

A rational expectations Cournot equilibrium (RECE) is a vector $(x_1^*, x_2^*, ..., x_n^*, S^*)$ such that

(i)
$$x_i^* \in \operatorname{arg\,max}_x \left[x P\left(x + \sum_{j \neq i} x_j^*, S^* \right) - cx \right]$$

(ii)
$$S^* = \sum_{i=1}^n x_i^*$$

Some thoughts on RECE

- Hybrid concept: firms are strategic in output choice but network size-taking
- RECE is suitable when firms lack commitment power (Katz-Shapiro, 85)
- RECE are equivalent to SPE of two-stage game with market maker acting in stage 1
- RECE reflects co-opetition: Firms are partners in building a common network but competitors in serving it

Assumptions

A1
$$P_1(Z, S) < 0$$
 and $P_2(Z, S) > 0$

A2
$$\Delta_{2}(Z,S) = P(Z,S) P_{12}(Z,S) - P_{1}(Z,S) P_{2}(Z,S) > 0$$

Key implications

$$\widetilde{\pi}(Z, y, S) = (Z - y)[P(Z, S) - c]$$

- $\blacksquare \ \, \mathsf{A2} \iff \left[\log P\left(\mathsf{Z},\mathsf{S} \right) \right]_{\mathsf{ZS}} > 0 \iff \left[\log \widetilde{\pi} \left(\mathsf{Z},\mathsf{y},\mathsf{S} \right) \right]_{\mathsf{ZS}} > 0$
- A symm. Cournot equ. exists for each S.

Results

MODEL I: Industry-wide network

- Let $Z_n(S)$ be Cournot equ. total output given network size S.
- RECE are the fixed points of $Z_n(S)$.
- Key property: $Z_n(S)$ is increasing in S

Theorem

There is a symmetric equilibrium and no asymmetric equilibria.

Main idea. By Tarski FPT, a fixed point exists, and is a RECE.

- For pure network goods, P(Z, 0) = 0 $\implies Z_n(0) = 0$ is a RECE Zero expectations are self-fulfilling
- lacktriangle More generally, low stand-alone value $\Longrightarrow 0$ is a trivial RECE

Lemma

For any n, $Z_n(0)=0$ is a RECE iff $P\left(0,0\right)\leq c$. If $Z_n=0$ is a RECE for some n, it remains one for all n.

Fixed point approach is inadequate.
 Need to show existence of non-trivial RECE.

Existence of non-trivial RECE

Theorem (NTE)

A non-trivial equilibrium exists if at least one condition holds

- (i) $Z_n = 0$ is not a RECE;
- (ii) $Z_n = 0$ is a RECE and $n > \frac{-P_1(0,0)}{P_1(0,0) + P_2(0,0)}$; or
- (iii) $Z_n = 0$, and for some S and all $Z \leq S$,

$$P(Z,S) + \frac{Z}{n}P_1(Z,S) \geq c$$

Industry Viability

Define expectations/network size dynamics, starting from S_0 ,

$$S_k = Z_n\left(S_{k-1}\right)$$
 , $k \geq 1$.

Definition

An industry is said to be

- (i) uniformly viable if $\lim S_k > 0$ from any $S_0 > 0$
- (ii) conditionally viable if $\lim S_k > 0$ from any $S_0 > 0$ high enough
- (iii) nonviable if $\lim S_k = 0$ from any $S_0 \ge 0$.

Note. Simplifying assumption in past work P(Z, S) = p(Z) + f(S)

Key implication: uniform viability

Market structure/technology and viability

Theorem

- $Z_n(.)$ shifts up as
- (i) n increases, and/or
- (ii) α increases.

Hence, industry viability always increases with

- (i) more competing firms and/or
- (ii) technological progress (or process R&D).

MODEL II: firm-specific network

- Inverse demand is P(Z, s), s = firm-specific network size
- Let $q_n(s) = \text{Cournot equ.}$ per-firm output given sHence $q_n(s) = Z_n(s)/n$
- FECE are fixed points of $q_n(s)$.
- Similar conditions for existence

Viability

- If P(Z, s) is log-concave in Z, $q_n(s)$ decreases in n.
- Viability decreases in *n* (monopoly is best)!
- Viability is better in Model I.

Case Study: The fax industry (Rohlffs, 2001).

- First failed launch mid-1800's in Lyon, France
 Firm-specific networks and bad technology
- Successful launch in 1980's : Single network after gov't mandated interconnection
- Rohlffs (2001): This is a general pattern Gov't intervention can help viability in many ways: create a single network, coordinate entry, increase S₀...

Example

$$P(Z,S) = \exp\left(-\frac{2Z}{\exp(1-1/S)}\right)$$

Usual 3-equ. configuration with analytical solutions

- n=1: industry not viable
- n=2: borderline case (tangency point as RECE)
- $n \ge 3$: industry conditionally viable
- \blacksquare π_n is not decreasing in n here.

In fact, $\pi_1 = 0$: A monopolist would want some competitors!

Comparison of the 2 models

- Outputs. $x_n^l \ge x_n^{ll}$ (or $Z_n^l \ge Z_n^{ll}$)
- The (endogenous) inverse demands satisfy $P(\cdot, \overline{z}_n^C) > P(\cdot, \overline{x}_n^I)$
- Price. $P_n^I \ge P_n^{II}$ if $-P_1P_2 + z(P_1P_{12} P_2P_{11}) \ge 0$
- $CS_n^I \ge CS_n^{II}$ if $P_n^I \le P_n^{II}$ or $P_{12} \le 0$
- Profit. $\pi_n^I \ge \pi_n^{II}$ if $-P_1(2P_2 + xP_{12}) + z(P_1P_{12} P_2P_{11}) \ge 0$. Ex. $P(Z, S) = Se^{-Z}$. Then $\pi_n^I = ne^{-n} < \pi_n^{II} = e^{-n}$
- $W_n^I \ge W_n^{II}$ (large gap if Model I is viable and Model II is not)

Free-entry Equilibrium (FEE) in Model I

■ Consider standard two-stage game (entry cost *K*):

Stage 1. each firm decides: Enter or not

Stage 2. RECE amongst entrants.

- FEE # of firms n^e is defined by $\pi_{n^e} \geq K$ and $\pi_{n^e+1} < K$
- In standard oligopoly, π_n is decreasing in $n \Longrightarrow \mathsf{FEE}$ is unique.
- Since π_{n^e} is not decreasing in n, multiple FEE are possible (i.e., $\pi_{n^e} = K$ has multiple solutions)
- If monopoly non-viable $\implies n^e = 0$ is a FEE (no industry!)

For a unique FEE outcome, we need a new equilibrium concept.

Two possible solutions:

An equilibrium refinement:
 Use Coalition-Proof Nash Equ. in entry decision.

Then FEE yields the maximal # of firms sustainable in industry as unique outcome (this is also practitioner's definition).

A sequential entry process in stage 1: Change Stage 1 to sequential entry

Then maximal # of firms sustainable in industry is unique outcome

On the theoretical scope of RECE

How broad is the class of $Z_n(\cdot)$'s that can be rationalized?

Answer: Any function h(S) with h' > 0

Consider the inverse demand

$$P(Z,S) = \exp[-nZ/h(S)].$$

Given S, \exists a (dominant-strategy) Cournot equ. $x^* = h(S)/n$, so

$$Z^*(S) = h(S)$$

In particular, if one takes h(S) = S, any feasible outcome is a RFCF!

Model with commitment

- Here, firms can commit to output levels and influence consumers' expectations of *S* (Katz-Shapiro 85)
- The model then boils down to standard Cournot with inverse demand P(Z, Z).
- This demand is downward-sloping iff output effect outweighs network effect, i.e

$$P_{1}\left(Z,Z\right) +P_{2}\left(Z,Z\right) <0$$

The profit function of a firm is

$$\pi(x, y, S) = xP(x + y, x + y) - cx$$

After change of variable

$$\widetilde{\pi}(Z, y, S) = (Z - y) [P(Z, Z) - c]$$

Key Results

■ Firms act as if P(Z, Z) were downward-sloping (with flat spots), i.e as if

$$\widehat{P}(Z) = \sup_{a \geq Z} P(a, a)$$

 $\widehat{P}(Z)$ is the smallest decreasing function that majorizes $P\left(Z,Z\right)$: "Ironing"

- The mapping $y \longrightarrow Z$ is always increasing \Longrightarrow Existence of Cournot equ.
- Industry output higher, so tougher competition under pure Cournot.
- Industry viability is not a prominent issue under Cournot, so commitment model less suitable to capture industry failures.

Example

Model 1: RECE with P(Z, S) = S(a - bZ)

Price elasticity is independent of S.

$$\pi(x, y, S) = xS[a - b(x + y)] - cx$$

Then
$$Z_n(S) = \frac{n(aS-c)}{b(n+1)S} = S$$

- There are
- 1 3 equilibria (if n > 3 and $a^2 > 4bc$)

$$Z_n = 0$$
 and $Z_n = \frac{an \pm \sqrt{a^2n^2 - 4cbn(n+1)}}{2b(n+1)}$

Conditionally viable industry.

2 1 equilibrium if n < 3: $Z_n = 0$ and industry is non-viable.

Model 2: Cournot with
$$P(Z, Z) = Z(a - bZ)$$

FOC:
$$3bx^2 + 2(2by - a)x + by^2 - ay - c = 0$$

Unique Cournot equ. with (if $a^2 > 4bc$)

$$Z_n = \frac{a(n+1) + \sqrt{a^2(n+1)^2 - 4cbn(n+2)}}{2b(n+2)}$$

Comparison

- Industry output higher under commitment model, so tougher competition
- Industry viability higher under commitment model : viability can be an issue only for usual high cost reasons, but not for expectations-based reasons.