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Introduction to dynamic conditional score (DCS) models

1. A unified and comprehensive theory for a class of nonlinear time series
models in which the dynamics of a changing parameter, such as location
or scale, is driven by the score of the conditional distribution.
2. Dynamics are driven by the score of the conditional distribution.
3. For EGARCH, analytic expressions may be derived for (unconditional)
moments, autocorrelations and moments of multi-step forecasts. An
asymptotic distributional theory for ML estimators can be obtained,
sometimes with analytic expressions for the asymptotic covariance matrix.
4. Similar results for location/scale models based on a GB2 distribution.
5. Extensions to multivariate time series. Correlation or association may
change over time. Time-varying copulas.
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Introduction to dynamic conditional score (DCS) models

Harvey, A.C. Dynamic models for volatility and heavy tails. CUP 2013
Creal et al (2011, JBES, 2013, JAE).
**
http://www.econ.cam.ac.uk/DCS

***
GAS package R by David Ardia, Kris Boudt, and Leopoldo Catania.
Computer code: R package GAS.
The ‘development’version is available from GitHub at
Development code: Development R package GAS
and will be updated more regularly then the one from CRAN.
Vignette: "Generalized Autoregressive Score Models in R: The GAS
Package".
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Introduction to dynamic conditional score (DCS) models

A guiding principle is signal extraction. When combined with basic ideas
of maximum likelihood estimation, the signal extraction approach leads to
models which, in contrast to many in the literature, are relatively simple in
their form and yield analytic expressions for their principal features.
For estimating location, DCS models are closely related to the unobserved
components (UC) models described in Harvey (1989).
Such models can be handled using state space methods and they are easily
accessible using the STAMP package of Koopman et al (2008).
For estimating scale, the models are close to stochastic volatility (SV)
models, where the variance is treated as an unobserved component.
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Unobserved component models

A simple Gaussian signal plus noise model is

yt = µt + εt , εt ∼ NID
(
0, σ2ε

)
, t = 1, ...,T

µt+1 = φµt + ηt , ηt ∼ NID(0, σ2η),
where the irregular and level disturbances, εt and ηt , are mutually
independent. The AR parameter is φ, while the signal-noise ratio,
q = σ2η/σ2ε , plays the key role in determining how observations should be
weighted for prediction and signal extraction.
The reduced form (RF) is an ARMA(1,1) process

yt = φyt−1 + ξt − θξt−1, ξt ∼ NID
(
0, σ2

)
,

but with restrictions on θ. For example, when φ = 1, 0 ≤ θ ≤ 1. The
forecasts from the UC model and RF are the same.
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Unobserved component models

The UC model is effectively in state space form (SSF) and, as such, it may
be handled by the Kalman filter (KF). The parameters φ and q can be
estimated by ML, with the likelihood function constructed from the
one-step ahead prediction errors.
The KF can be expressed as a single equation. Writing this equation
together with an equation for the one-step ahead prediction error, vt , gives
the innovations form (IF) of the KF:

yt = µt |t−1 + vt
µt+1|t = φµt |t−1 + ktvt

The Kalman gain, kt , depends on φ and q.
In the steady-state, kt is constant. Setting it equal to κ and re-arranging
gives the ARMA(1,1) model with ξt = vt and φ− κ = θ.
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Outliers

Suppose noise is from a heavy tailed distribution, such as Student’s t.
Outliers.
The RF is still an ARMA(1,1), but allowing the ξ ′ts to have a heavy-tailed
distribution does not deal with the problem as a large observation becomes
incorporated into the level and takes time to work through the system.
An ARMA models with a heavy-tailed distribution is designed to handle
innovations outliers, as opposed to additive outliers. See the robustness
literature.
But a model-based approach is not only simpler than the usual robust
methods, but is also more amenable to diagnostic checking and
generalization.
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Unobserved component models for non-Gaussian noise

Simulation methods, such as MCMC, provide the basis for a direct attack
on models that are nonlinear and/or non-Gaussian. The aim is to extend
the Kalman filtering and smoothing algorithms that have proved so
effective in handling linear Gaussian models. Considerable progress has
been made in recent years; see Durbin and Koopman (2012).
But simulation-based estimation can be time-consuming and subject to a
degree of uncertainty.
Also the statistical properties of the estimators are not easy to establish.
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Observation driven model based on the score

The DCS approach begins by writing down the distribution of the t − th
observation, conditional on past observations. Time-varying parameters
are then updated by a suitably defined filter. Such a model is observation
driven, as opposed to a UC model which is parameter driven. In a linear
Gaussian UC model, the KF is driven by the one step-ahead prediction
error, vt . The DCS filter replaces vt in the KF equation by a variable, ut ,
that is proportional to the score of the conditional distribution.
The innovations form becomes

yt = µt |t−1 + vt , t = 1, ...,T

µt+1|t = φµt |t−1 + κut

where κ is an unknown parameter.
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Dynamic location model

yt = ω+ µt |t−1 + ϕεt ,

µt+1|t = φµt |t−1 + κut ,

where εt is serially independent, standard t-variate and

ut =

(
1+

(yt − µt |t−1)
2

νϕ2

)−1
vt ,

where vt = yt −ω− µt |t−1 is the prediction error and ϕ is the scale.
ut → 0 as |y | → ∞. In the robustness literature this is called a
redescending M-estimator. It is a gentle form of trimming.
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Figure: Impact of ut for tν (with a scale of one) for ν = 3 (thick), ν = 10 (thin)
and ν = ∞ (dashed).
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Dynamic location model with trend and seasonals

yt = µt |t−1 + γt |t−1 + ϕεt , t = 1, ...,T ,

The filter for the trend is

µt+1|t = µt |t−1 + βt |t−1 + κ1ut
βt+1|t = βt |t−1 + κ2ut .

The filter for the seasonal is

γt |t−1 = z
′
tγt |t−1, γt+1|t = γt |t−1 + κtut ,

where the s × 1 vector zt picks out the current season from the vector
γt |t−1. If κjt , j = 1, .., s, denotes the j − th element of κt , then in season j
we set κjt = κs , where κs is a non-negative unknown parameter, whereas
κit = −κs/(s − 1), i 6= j , i = 1, .., s. The amounts by which the
seasonal effects change therefore sum to zero.
The initial conditions at time t = 0 are estimated by treating them as
parameters.
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EGARCH: El Classico

In the classic EGARCH model of Nelson (Econometrica, 1991)

yt = σt |t−1εt , εt v IID (0, 1) .

ln σ2t+1|t = γ+ φ ln σ2t |t−1 + αεt + β [|εt | − E |εt |]

The term αεt + β [|εt | − E |εt |] is a zero mean, IID sequence, which is
able to respond asymmetrically (when α 6= 0) to rises and falls in stock
price (leverage).
Stationary if |φ| < 1.
*****
Nelson notes that if εt is tν with ν, moments of σ2t |t−1 and yt rarely exist
even though they are strictly stationary.
Also - is it invertible? Straumann and Mikosch (2006) show there exist
invertible models when φ = 0.
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Exponential DCS Volatility Models: Beta-t-EGARCH

yt = εt exp(λt pt−1), t = 1, ....,T ,

where the serially independent, zero mean variable εt has a tν−distribution
with degrees of freedom, ν > 0, and the dynamic equation for the log of
scale is

λt+1pt = δ+ φλt pt−1 + κut .

The conditional score is

ut =
(ν+ 1)y2t

ν exp(2λt |t−1) + y2t
− 1, −1 ≤ ut ≤ ν, ν > 0

NB The variance is equal to the square of the scale, that is
(ν− 2)σ2t |t−1/ν for ν > 2.
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Figure: Impact of ut for tν with ν = 3 (thick), ν = 6 (medium dashed) ν = 10
(thin) and ν = ∞ (dashed).
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Beta-t-EGARCH

The variable ut may be expressed as

ut = (ν+ 1)bt − 1,

where

bt =
y2t /ν exp(2λt pt−1)

1+ y2t /ν exp(2λt pt−1)
, 0 ≤ bt ≤ 1, 0 < ν < ∞,

=
ε2t /ν

1+ ε2t /ν

is distributed as Beta(1/2, ν/2).
The u′ts are IID.

(Faculty of Economics, University of Cambridge)Dynamic Conditional Score (DCS) Models and Realized Variance Andrew Harvey (ach34@cam.ac.uk)May 2018 18 / 53



Beta-t-EGARCH: moments

The score is bounded.
The existence of unconditional moments of the observations, yt , depends
only on the existence of moments of the conditional distribution, that is
the distribution of εt .

The moments of the scale always exist and hence the volatility process
does not affect the existence of unconditional moments.
Analytic expressions for the unconditional moments can be derived for
|yt |c , c ≥ 0.
Can also find expresions for autocorrelations of |yt |c .
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Generalized t-distribution

General Error distribution (GED) leads to Gamma-GED-EGARCH model.
The score is gamma distributed.
Student-t and GED are special cases of generalized-t . (NB. Absolute
value of gen-t is GB2)
The flexibility of Gen-t goes a long way towards meeting the objection that
parametric models are too restrictive and hence vulnerable to
misspecification -see McDonald and Newey (Econometrica, 1987).
Harvey and Lange (2016, JTSA). Volatility Modeling with a Generalized
t-distribution.
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Invertibility

Λt (ψ) := sup |xt |
where xt = dλt+1|t/dλt |t−1 = φ+ κ(∂ut/∂λt pt−1). Blasques et al (2018)
show that a suffi cient condition for invertibility is E lnΛ0(ψ) < 0 over all
admissible ψ.
A suffi cient condition for invertibility of Beta-t-EGARCH is

|φ− κ(ν+ 1)/2| < 1.

Obtained as ∂ut/∂λt pt−1 = −(ν+ 1)bt (1− bt ) < 0 and the maximum
value of bt (1− bt ) is 1/4. Then |xt | < 1 for all t and so E lnΛ0(ψ) < 0.
When κ > 0

κ <
2(1+ φ)

ν+ 1
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Invertibility

The condition is probably much stronger than necessary. However, so long
as tail index is not too large, it seems to include parameter values that
arise in practice.

Example
Beta-t-EGARCH with ν = 9 and φ = 0.999, requires κ < 0.40. Even with

ν = 39, κ < 0.10. These bounds are halved for φ = 0.5, but are still
comfortably high and φ is normally above 0.9.

***
Empirical

1
T ∑ ln |xt | < 0
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Asymmetric impact curve (leverage)

Returns may have a different effect on volatility depending on whether
they are positive or negative:

λt+1|t = ω (1− φ) + φ λt |t−1 + κ ut + κ∗u∗t

where u∗t = sgn (µ− yt )(ut + 1) and κ∗ is a parameter.
The effect of the extra term is to add or subtract, depending on
sgn(yt − µ), a fraction of the impact curve plus one.
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Figure: Impact of u for t9. Purple is κ = κ∗
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Figure: Red has κ = 0.
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Two components

Instead of capturing long memory by a fractionally integrated process, two
components may be used.

λt |t−1 = ω+ λ1,t |t−1 + λ2,t |t−1,

λi ,t+1|t = φi λi ,t |t−1 + κi ut + κ∗i sgn(−εt ) (ut + 1), i = 1, 2,

It is often found that the leverage effect is confined to the short-term
component. In this case, the evolution of the long-run component will be
less susceptible to the influence of strongly negative returns and so may be
more suitable for capturing the ARCH-M effect.
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Location/scale models for positive variables: duration,
realized volatility and range

Engle (2002) introduced a class of multiplicative error models (MEMs) for
modeling non-negative variables, such as duration, realized volatility and
range.
The conditional mean, µt pt−1, and hence the conditional scale, is a
GARCH-type process. Thus

yt = εtµt pt−1, 0 ≤ yt < ∞, t = 1, ....,T ,

where εt has a distribution with mean one and, in the first-order model,

µt pt−1 = βµt−1|t−2 + αyt−1.
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Positive variables: duration, realized volatility and range

An exponential link function, µt pt−1 = exp(λt pt−1), not only ensures that
µt pt−1 is positive, but also allows the asymptotic distribution to be derived.
The model can be written

yt = εt exp(λt pt−1)

with dynamics
λt+1pt = δ+ φλt pt−1 + κut .
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Generalized gamma and beta distributions for positive
variables with changing location/scale

The statistical theory of DCS models for positive variables is simplified by
the fact that for the gamma and Weibull distributions the score and its
derivatives are dependent on a gamma variate, while for the Burr,
log-logistic and F-distributions the dependence is on a beta variate.
Gamma and Weibull distributions are special cases of the generalized
gamma (GG) distribution.
Burr and log-logistic distributions are special cases of the generalized
beta of the second kind (GB2) distribution.
GB2 has fat tails except in a limiting case when it goes to GG.
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Generalized gamma and beta distributions for positive
variables with changing location/scale

The PDF of a GB2 is

f (y) =
ν(y/α)νξ−1

αB(ξ, ς)
[
(y/α)ν + 1

]ξ+ς
, α, ν, ξ, ς > 0,

where α is the scale parameter, ν, ξ and ς are shape parameters and
B(ξ, ς) is the beta function; see Kleiber and Kotz (2003, ch6).
The GB2 distribution contains many important distributions as special
cases, including the Burr (ξ = 1) and log-logistic (ξ = 1, ς = 1).
Furthermore Generalized Gamma (includes Weibull as well as gamma) is a
special limiting case.
The F-distribution is related to GB2 in that for an F-distribution with
(ν1, ν2) degrees of freedom, (ν1, ν2)F is GB2(ν1/2, ν2/2).
GB2 distributions are fat tailed for finite ξ and ς with upper and lower
tail indices of η = ςν and η = ξν respectively.
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Generalized gamma and beta distributions for positive
variables with changing location/scale

Score is bounded.
Invertibility

κ <
4(1+ φ)

υ2(ξ + ς)

The condition appears to place a constraint on the magnitude of ξ and ς.
However, this diffi culty can be avoided by analysing what happens when
we work with the logarithm of yt .
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Realized volatility

If pt as the log closing price of the index at time t, logPt , the return rt is
defined as rt = pt − pt−1. If each daily interval is divided into m
subintervals, the Realised Variance (RV) daily estimator can be
constructed as

RVt =
m

∑
i=1
r2t ,i
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Figure: ACF of lnRV
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Realized volatility - EGB2

ln yt = xt = λt pt−1 + ln εt

Location/scale, λt pt−1, now becomes location and the error is additive.
Whereas yt is intrinsically heteroscedastic, ln εt has constant (conditional)
variance.
The distribution is exponential GB2 (EGB2). The EGB2 is symmetric
when ξ = ς. It includes both normal, when ξ = ς→ ∞, and Laplace,
when ξ = ς→ 0, as special cases; see McDonald and Xu (1995) and
Caivano and Harvey (2014). Hence the EGB2, like the GED, is a light
tailed distributions covering the space between normal and Laplace. The
logistic distribution sets ξ = ς = 1.
The model can be estimated in levels or logs - same result.

(Faculty of Economics, University of Cambridge)Dynamic Conditional Score (DCS) Models and Realized Variance Andrew Harvey (ach34@cam.ac.uk)May 2018 34 / 53



5 4 3 2 1 1 2 3 4 5

4

3

2

1

1

2

3

4

y

Score

Standardized score for logistic and normal

(Faculty of Economics, University of Cambridge)Dynamic Conditional Score (DCS) Models and Realized Variance Andrew Harvey (ach34@cam.ac.uk)May 2018 35 / 53

Realized volatility

Replace υ, which is now a scale parameter, by h/σ where σ is the sd of yt
and h =

√
ψ′(ξ) + ψ′(ς). The forcing variable in the dynamic equation is

then

ut = σ2
∂ ln ft

∂µt pt−1
= σh[(ξ + ς)bt (ξ, ς)− ξ].

As ς = ξ → ∞, the distribution becomes normal and so for large ς and ξ,
ut ' yt − µt pt−1 and σ2u → σ2.
The invertibility condition is ∣∣φ− κh2ς/2

∣∣ < 1
For a logistic distribution, when ξ = ς = 1, the invertibility condition is
|φ− 1. 645κ| < 1. But the coeffi cient of κ goes to one rapidly as ς
increases. Since ςh2 → 2 as ς→ ∞, it follows that −σ2u′t → 1 and the
standard invertibility condition for a Gaussian model is obtained, that is
|φ− κ| < 1.
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Long memory, Fractional integration and HAR

Long memory in RV can be modeled by a FI model for λt pt−1, as in
FIEGARCH; see Bollerslev and Mikkelsen (1996). Estimation is by ML.
The Heterogeneous Autoregression (HAR) model for RV is a parsimonious
approximation to the high-order autoregressions implied by long memory;
see Corsi (2009). The standard HAR regresses RV on the past 1-day,
5-day, and 22-day average realized variances. Thus

yh,t+h = µ+ βdyt + βw yw ,t + βmym,t + ζh,t+h,

where yt is the RV series, yh,t =
(

∑h
i=1 yt−i/h

)
for h = w = 5 and

h = m = 22, and ŷh,t+h is the h-day cumulative average for h = 1, 2, ..
Usually h = 1. The disturbance term is ζh,t+h.
Better to work in logs, particularly when h = 1. The fact that the log
model is additive makes aggregation more appealing because the
(conditional) variance is constant.
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Realized volatility

A preliminary investigation of the properties of RV is best carried out by
taking logarithms. Taking logarithms is particularly attractive when ln εt
not too far from normality. Taking logarithms also facilitates a comparison
with HAR.
If the disturbance is treated as Gaussian, linear unobserved components
models may be fitted, using a package such as STAMP.
Fitting one AR(1) component gives a very high Q(67) with a high
r(1) = 0.078. We therefore fit two AR(1) components. One of these has a
coeffi cient close to unity and so can be replaced by a RW. Including a
second AR(1) reduces r(1) to 0.033 but correlations at lags of multiples of
5 are apparent. The spectrum clearly shows peaks at 2/5 and its harmonic
4/5. The model is therefore augmented by including a weekly seasonal
component.
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Realized volatility
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Figure: ACF and spectrum of residuals from fitting a RW and AR1 to lnRV
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Realized volatility
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Realized volatility

For range or RV, the leverage term is governed by sgn(−rt ), where rt
denotes mean-adjusted returns. Thus

λi ,t+1|t = φi λi ,t |t−1 + κi ui ,t + κ∗i sgn(−rt ) (ut + 1), i = 1, 2,

Other components may be added, eg

λt |t−1 = ω+ λ1,t |t−1 + λ2,t |t−1 + γt |t−1,

where γt |t−1 is a seasonal component.
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Realized volatility

A GB2 ( or EGB2) can be fitted to RV with two components, leverage and
a seasonal.
Fit with a Burr distribution or balanced GB2, that is ξ = ς, is best.
The HAR model does rather well given its simplicity but Q is still high and
ln L is much smaller. The sum of the coeffi cients is 0.961.
The HAR model eliminates serial correlation at lag 5 - but not at multiples
of 5 - so it is not dealing with the weekly effect. There is no detectable
monthly effect - but there wasn’t before the model was fitted. (Of course
if the dependent variable is the average over the week, the weekly effect
will be eliminated.)
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Figure: ACFs of scores for absolute values of residuals from preferred lnRV
model (top left hand) plus ACFs of scores for tail parameters.
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Heteroscedasticity and a Changing Tail Index

Although the residuals from the preferred Gaussian RW+AR1+daily model
have relatively little serial correlation, this is not true for their squares or
absolute values. For fixed ξ and ς, the scale of the EGB2 is 1/υ and the
score wrt υ = exp(−υ) is

∂ ln ft/∂υ = (ξ + ς)εtbt − ξεt − 1,

where εt = (xt − λt |t−1)/υ and

bt =
exp{(xt − λt |t−1)/υ}

1+ exp{(xt − λt |t−1)/υ} .

The score is symmetric but unbounded. Caivano and Harvey (2014, p 566)
show that in the limit as ξ = ς→ ∞,
∂ ln ft/∂υ = (xt − λt |t−1)

2/Var(xt )− 1, which is the score for a Gaussian
EGARCH model. At the other extreme, when ξ = ς = 0, the score is√
2
∣∣xt − λt |t−1

∣∣ /SD(xt )− 1.
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Heteroscedasticity and a Changing Tail Index

How should heteroscedasticity in the logarithm of a variable that is already
subject to changing variance be interpreted? As was noted earlier, the
(upper) tail index for a GB2 is η = υς. Thus for a fixed value of ς, a
dynamic υ implies that η is dynamic. It also might imply that the lower
tail index, υξ, is dynamic.
We could let the tail index be dynamic directly or let ς be dynamic and
keep υ fixed. In the latter case, setting ξ = ς gives

∂ ln ft/∂ς = −2ψ(ς) + 2ψ(2ς) + εt + 2 ln(1− bt )

This is symmetric and for large xt ,
∂ ln ft/∂ς ' −2ψ(ς) + 2ψ(2ς)− |εt | /υ. The ACF for this score is similar
to the one for υ. This is not surprising because both scores are given
approximately by the absolute values of the residuals.
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Heteroscedasticity and a Changing Tail Index

If ξ = ς is not assumed,

∂ ln ft/∂ς = −ψ(ς) + ψ(ς+ ξ) + ln(1− bt )

and, as can be seen from the graph, the (dashed) curve is asymmetric with
large positive (negative) observations lowering (raising) the value of ς.
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Multivariate models

The F-distribution gives a good fit to RV, although it is not the best.
However, it does generalize to the modelling of an N ×N realized
volatility covariance matrix, Yt ; see Opschoor et al (2016). The
multivariate F has pdf

f (Yt | Ωt pt−1, ν1, ν2) = K (ν1, ν2)
|Ωt pt−1|−ν1/2 |Yt |(ν1−N−1)/2∣∣I+Ω−1t pt−1Yt

∣∣(ν1+ν2)/2
,

where ν1, ν2 > N − 1, Ωt pt−1 = (ν2 −N − 1)/ν1)Vt pt−1 is a scale matrix,
such that Vt pt−1 = E (Yt ) for ν1, ν2 > N − 1, and

K (ν1, ν2) =
ΓN ((ν1 + ν2)/2)

ΓN (ν1/2)ΓN (ν2/2)
,

where ΓN (.) is the multivariate gamma function. When ν2 → ∞, the
distribution becomes a Wishart distribution, which is the multivariate
generalization of χ2. A single entry on the diagonal of Yt , yii ,t ,
i = 1, ...,N, is distributed as F (ν1, ν2 −N − 2).
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Multivariate models

A parsimonious model adopted by Opschoor et al (2016) is

Vt+1pt = V+ φVt pt−1 + κUt , (1)

where Ut is a scaled score matrix for Vt pt−1. The assumptions
0 < κ < φ < 1 and V is a pd matrix ensure the stationarity of Yt with the
unconditional expectation of Yt being (1− φ)−1V. A simple extension is

Vt+1pt = V+ΦVt pt−1Φ′ +KUtK′

where Φ and K are lower triangular matrices ( and V is also decomposed
as such). In principle Vt pt−1 or, equivalently ṫ pt−1, could have been
modeled as ṫ pt−1 = Dt pt−1Rt pt−1Dt pt−1.
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Multivariate models

The matrix of scores is taken wrt a general non-symmetric Vt pt−1 matrix
and after scaling by a (scalar) multiple of Vt pt−1 ⊗Vt pt−1 is

Ut =
ν1

ν1 + 1

[
ν1 + ν2

ν2 −N − 1
Yt

(
IN +

ν1
ν2 −N − 1

V−1t pt−1Yt

)−1
−Vt pt−1

]

The theoretical properties are obtained by using the fact that a
transformation of the scaled score has a multivariate beta distribution;
compare the result for a univariate F - a special case of GB2 with υ = 1
and ς = ξ = 2ν1 = 2ν2 as in Harvey (2013, pp 167-8).
When ν2 → ∞,

Ut →
ν1

ν1 + 1
[Yt −Vt pt−1]

which is the scaled score for the Wishart distribution. The results in
Opschoor et al (2016) indicate a much better fit for the multivariate F .
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Conclusion

DCS is statistically coherent and is able to model daily effects and
asymmetric response (leverage) in a straighforward and transparent
manner using ML. Structure and asymptotics similar to EGARCH (eg
Harvey/Lange). The boundedness of the forcing variable in the dynamic
equation makes the filtered volatility resistant to extreme values (outliers).
It also ensures invertibility for models with parameters that tend to arise in
practice.
Working in logarithms is useful in that the normal distribution is a limiting
case and preliminary investigation is easily carried out using linear SSMs.
Other models, although nonlinear, are relatively simple in that they only
have one extra parameter, eg LL and bEGB2 and F. Simple and practical.
The analysis reveals a day of the week effect, which has not been observed
in returns (or range).
HAR a benchmark. Best in logs. Similar forecasting performance but in
general unable to beat our model. Asymmetry less easy to deal with and
daily effect ruled out by construction.
Generalizes to multivariate case.
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