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Abstract: Inflation forecasting is an important but difficult task. In this paper, we
explore the advances in machine learning (ML) methods and the availability of new and
rich datasets to forecast US inflation over a long period of out-of-sample observations.
Despite the skepticism in the previous literature, we show that ML models with a large
number of covariates are systematically more accurate than the benchmarks for several
forecasting horizons both in the 1990s and the 2000s. The ML method that deserves more
attention is the random forest, which dominated all other models in several cases. The
good performance of the random forest method is due not only to its specific method of
variable selection but also the potential nonlinearities between past key macroeconomic
variables and inflation. The results are robust to inflation measures, different samples,
levels of macroeconomic uncertainty, and periods of recession and expansion.
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1. INTRODUCTION

It is difficult to overemphasize the importance of forecasting inflation in rational eco-
nomic decision-making. Many contracts concerning employment, sales, tenancy, and debt
are set in nominal terms. Therefore, inflation forecasting is of great value to households,
businesses and policymakers. In addition, central banks rely on inflation forecasts not
only to inform monetary policy but also to anchor inflation expectations and thus en-
hance policy efficacy. Indeed, as part of an effort to improve economic decision-making,
many central banks release their inflation forecasts on a regular basis.

Despite the great benefits of forecasting inflation accurately, improving simple bench-
mark models has been proven to be a major challenge for both academics and practi-
tioners. As Stock & Watson (2010) emphasize, “it is exceedingly difficult to improve
systematically upon simple univariate forecasting models, such as the Atkeson & Oha-
nian (2001) random walk model [...] or the time-varying unobserved components model
in Stock & Watson (2007).” This conclusion is supported by a large literature; see Faust
& Wright (2013) for a recent survey. Nonetheless, this literature has so far largely ig-
nored the recent machine learning (ML) and “big data” boom in economics." Moreover,
previous works either focused on a restrictive set of variables or were based on a small
set of factors computed from a larger number of potential predictors known as “diffusion
indexes”; see, for example, Stock & Watson (2002).

“Big data” and ML methods are not passing fads, and investigating whether the com-
bination of these two methods is able to provide more accurate forecasts is of paramount
importance. Gu et al. (2018), for example, show recently that machine learning meth-
ods coupled with more than 900 potential predictors improve substantially out-of-sample
stock return prediction. In a similar spirit, and despite the previous skepticism, we argue
that these methods lead to more accurate inflation forecasts. Moreover, this new set of
models can also help to uncover the main predictors for future inflation, possibly shedding
light on the drivers of price dynamics.

In this paper, we contribute to the literature in a number of ways. First, we robustly
show that it is possible to beat the usual univariate benchmarks for inflation forecasting,
namely, random walk (RW), autoregressive (AR) and unobserved components stochastic
volatility (UCSV) models. We consider several ML models in a data-rich environment
with hundreds of variables from the FRED-MD, a monthly database put together by

'See Varian (2014) and Mullainathan & Spiess (2017) for discussions of ML methods and big data in
economics. In this paper, we call ML models any statistical model that is able to either handle a large
set of covariates and/or describe nonlinear mappings nonparametrically. Some of the methods have been
around even before the “machines”.
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McCracken & Ng (2016), to forecast US inflation during more than twenty years of out-
of-sample observations and we show that the gains can be as large as 30% in terms of
mean squared errors.

Second, we highlight the main set of variables responsible for these forecast improve-
ments. Our results indicate that such set of variables is not sparse, which corroborates
the findings of Giannone et al. (2017) warning against the use of sparse predictive models.
Indeed, we find that ML models that do not impose sparsity are the best performing ones.
In contrast, the high level of aggregation of factor models, which has been one of the most
popular models for macroeconomic forecasting, is not adequate.

Finally, we aim to give a guidance for the choice of which class of ML. methods should
be used for inflation forecasting. Throughout the paper, we pay special attention to a
particular ML model, the random forest (RF) of Breiman (2001), which systematically
outperforms the benchmarks, factor models and ten additional ML methods covering a
wide class of specifications: the least absolute shrinkage and selection operator (LASSO)
family, which includes LASSO, adaptive LASSO, elastic net and the adaptive elastic
net; ridge regression (RR); Bayesian vector autoregressions (BVAR); and linear ensemble
methods such as bagging, boosting, complete subset regressions (CSR) and jackknife
model averaging (JMA). RF models are highly nonlinear nonparametric models that have
a tradition in statistics but have only recently attracted attention in economics. This late
success is partly due to the new theoretical results developed by Scornet et al. (2015) and
Wagner & Athey (forthcoming). Notably, Gu et al. (2018) also find that RF, by allowing

for nonlinearities, substantially improves stock return predictions.

1.1. Main takeaways. First, as mentioned before, and contrary to the previous evidence
in Stock & Watson (1999, 2007), Atkeson & Ohanian (2001), and many others, our results
show that consistently beating the benchmark specifications is possible. The ML models
outperform the univariate alternatives, especially if we consider the 2001-2015 period,
when the US inflation was more volatile compared to the 1990s. This is a robust finding for
both individual horizons and the accumulated twelve-month forecasts. Second, although
there is strong evidence of the existence of a small number of factors that drive the joint
dynamics of the potential predictors, factor models deliver inferior forecasts compared to
ML alternatives and are inferior to the RW method for the accumulated twelve-month
horizon. Furthermore, either replacing standard principal component factors with target
factors, as advocated by Bai & Ng (2008), or using boosting to select factors as discussed
in Bai & Ng (2009), improves the results only marginally. Third, RR have a superior
performance compared to the other linear ML methods, especially for short horizons.

However, the RF model delivers the smallest errors for most of the forecasting horizons
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for both the consumer price index (CPI) and the personal consumption expenditures
(PCE) inflation. The gains, in terms of mean squared error reduction, can be, on average,
of the order of 30%. This is a robust finding that is independent of the sample considered,
the state of the economy or the level of either macroeconomic, financial uncertainty or
real uncertainty. The RF model is an ensemble of fully grown regression trees estimated
on different bootstrap subsamples of the original data. Therefore, the RF model is a
nonsparse, highly nonlinear specification that aims to reduce the high variance of a single
regression tree.

To open the black box of ML methods, we compare the variables selected by the adaptive
LASSO method, RR, and the RF alternative. Following McCracken & Ng (2016), we
classify variables into nine different groups: (i) output and income; (ii) labor market; (iii)
housing; (iv) consumption, orders and inventories; (v) money and credit; (vi) interest and
exchange rates; (vii) prices; (viii) stock market; (ix) principal component factors computed
from the full set of potential predictors. The most important variables for RR and RF
models are stable across forecasting horizons but are quite different between the two
specifications. While for RR, AR terms, prices and employment are the most important
predictors, resembling a sort of backward-looking Phillips curve, RF models give more
importance to prices, interest-exchange rates, employment and housing. LASSO selection
is quite different across forecasting horizons and is, by construction and in opposition to
RF and RR models, sparse. Only AR terms retain their relative importance independent
of the horizon and prices gradually lose their relevance until up to six months ahead but
partially recover for longer horizons. Output-income are more important for medium-term
forecasts. Finally, none of the three classes of models selects either factors or stocks. Not
even RR or RF which produce nonsparse variable selection. This result may indicate that
the high level of cross-section aggregation of the factors is one possible cause for the poor
performance of the factor models.

To disentangle the effects of variable selection from nonlinearity, we also consider alter-
native models. In the first method, we use the variables selected by the RF model and
estimate a linear specification by OLS. In the second method, we estimate an RF speci-
fication with only the regressors selected by the adaptive LASSO method. Both models
outperform the RF only for one-month-ahead forecasting. For longer horizons, the RF
model is still the winner, which provides evidence that both nonlinearity and variable
selection play a key role in the superiority of the RF model.

There are many sources of nonlinearities relating the variables selected and inflation
that could justify the superiority of the RF model. For instance, the relationship be-
tween inflation and employment is nonlinear to the extent that it depends on the degree

of slackness in the economy. Another source of nonlinearities is economic uncertainty as
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this uncertainty increases the option value of economic decision delays if they have an
irreversible component (Bloom 2009). For example, if it is expensive to dismiss work-
ers, hiring should be nonlinear on uncertainty. In addition, this real option argument
also makes households and businesses less sensitive to changes in economic conditions
when uncertainty is high. Hence, the responses of employment and inflation to inter-
est rate decisions are arguably nonlinear on uncertainty. The presence of a zero lower
bound on nominal interest rates and the implications of this bound for unconventional
monetary policy is another source of nonlinearity among inflation, employment and inter-
est rate variables (Krugman 1998, Eggertsson & Woodford 2003). Finally, to the extent
that houses serve as collateral for loans, not only is monetary policy affected (Tacoviello
2005) but also a housing bubble can form, resulting in a deep credit crash (Geanakoplos
2010, Shiller 2014). Needless to say, these events are highly nonlinear and arguably have

nonlinear effects on inflation, employment and interest rates.

1.2. A brief comparison of the recent literature. The literature on inflation fore-
casting is vast, and there is substantial evidence that models based on the Phillips curve
do not provide good inflation forecasts. Although Stock & Watson (1999) showed that
many production-related variables are potential predictors of US inflation, Atkeson &
Ohanian (2001) showed that in many cases, the Phillips curve fails to beat even simple
naive models. These results inspired researchers to look for different models and vari-
ables to improve inflation forecasts. Among the variables used are financial variables
(Forni et al. 2003), commodity prices (Chen et al. 2014) and expectation variables (Groen
et al. 2013). However, there is no systematic evidence that these models outperform the
benchmarks.

More recently, due to the advancements in computational power, theoretical develop-
ments in ML, and availability of large datasets, researchers have started to consider the
usage of high-dimensional models on top of the well-established (dynamic) factor mod-
els of Stock & Watson (2002), Bai & Ng (2003, 2006), and Reichlin et al. (2000, 2004).
However, most of these studies have either focused only on a very small subset of ML
models or presented a restrictive analysis. For example, Inoue & Kilian (2008) considered
bagging, factor models and other linear shrinkage estimators in an exercise to forecast
US inflation with a small set of real economic activity indicators. Their study is more
limited than ours both in terms of the pool of models considered and richness of the
set of predictors. Nevertheless, the authors were among the few voices that suggested
that ML techniques can deliver nontrivial gains over univariate benchmarks. Medeiros &

Mendes (2016) provided evidence that LASSO-based models outperform both factor and
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AR benchmarks in forecasting US CPI. However, the analysis in the paper is restricted
to a single ML method for just one-month-ahead inflation forecasting.

Most of the previous papers in the literature have explored only linear ML models but
ignored nonlinear alternatives. The reason for this limitation is that most of the papers
in the early days considered only univariate nonlinear models that were, in most cases,
outperformed by simple benchmarks; see Terdsvirta et al. (2005) for an example. The
message of our paper is that the combination of a rich dataset with modern ML tools is
responsible for the nontrivial forecasting gains over traditional univariate benchmarks.?

Finally, this paper is different from many “horse-races” in the literature, as we not only
compare a large number of different models but we also try to clarify the mechanisms
why a given class of models is superior than others and not applying ML methods as pure

black-boxes specifications.

1.3. Organization of the paper. The remainder of this work is organized as follows.
Section 2 gives an overview of the dataset used in the paper. Section 3 describes the
forecasting methodology. The results are detailed in Section 4. We start by giving a birds-
eye view of the full set of results in Section 4.1, whereas in Section 4.2, we analyze the RF
performance with respect to the benchmarks. In Section 4.3, we compare all the models.
Section 5 concludes. The paper has a number of appendices and supplementary materials
that are not for publication. Appendix A documents the dataset used in the paper.
Appendix B presents an overview of the different benchmarks and ML methods/models
considered in the analysis. Appendix 7?7 briefly describes the tests used to compare the
forecasts from different models. Additional results, including the analysis of other inflation

measures, are presented in Appendix C.

2. DATA

Our data consist of 122 variables from the FRED-MD database, which is a large monthly
macroeconomic dataset designed for empirical analysis in data-rich environments. The
dataset is updated in real-time through the FRED database and is available from Michael
McCraken’s webpage.® For further details, we refer to McCracken & Ng (2016).

In this paper, we use the vintage as of January 2016. Our sample goes from January
1960 to December 2015 (672 observations), and only variables with all observations in

the defined sample period are used. The out-of-sample window is from January 1990

2More recently, Garcia et al. (2017) applied a large number of ML methods, including RFs, to real-time
inflation forecasting in Brazil. The results were very promising and indicated a clear superiority of the
CSR method of Elliott et al. (2013, 2015). However, an important question is whether this is a particular
result for Brazil or if similar findings can be replicated for the US economy.
3https://research.stlouisfed.org/econ/mccracken /fred-databases/
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to December 2015. All variables are transformed as described in Appendix A. The
price indexes are log-differenced only one time. Therefore, 7; is the inflation in month
t computed as m = log(P;) — log(P;—1), and P; is a given price index in period t. We
consider two different price indexes, namely, the CPI and the PCE. Figure 1 displays the
evolution of the CPI inflation rate during the full sample period.

We compare performances not only across models in the out-of-sample window but
also in two subsample periods, namely, 1990 to 2000 (132 out-of-sample observations)
and 2001 to 2015 (180 out-of-sample observations). In Table 1, we report the mean, stan-
dard deviation (Sd), median, maximum, minimum, first-order autocorrelation (AC1), and
sum of the first 36 autocorrelations (AC36) for several macroeconomics variables. These
variables include CPI monthly inflation (7;), CPI twelve-month inflation (m5+), monthly
growth of the industrial production (AlIP;), twelve-month growth of industrial production
(A2lP;) and measures of macroeconomic, financial and real uncertainty computed as in
Jurado et al. (2015), and broadly speaking, these measures are the conditional volatility of
the unforecastable part of macroeconomic, financial and firm-level variables, respectively.
In particular, the authors consider forecasting horizons of one, three and twelve months
ahead.*

The statistics in Table 1 give an overview of the economic scenario in each subsample.
The first sample corresponds to a period of low inflation volatility (o = 0.17%), while in
the second sample, inflation is much more volatile (¢ = 0.32%). However, on average,
inflation is higher during 1990-2000 than 2001-2015 and much more persistent as well.
Relative to the 1990-2000 period, inflation was more volatile near the recession in the
early 1990s. The monthly growth in industrial production is on average higher and less
volatile during the first subsample. Finally, uncertainty measures are uniformly higher

during 2001-2015, mainly due to the Great Recession.

3. METHODOLOGY
Consider the following model:
7Tt+h:Th($t)+ut+h, ,h:]_,...,H, t:]_,...,T, (1)

where 74, is the inflation in month ¢ + h; @y = (214, ..., 2,) 1S a n-vector of covariates,
possibly containing lags of 7, and/or common factors as well as a large set of potential
predictors; Ty, (-) is the mapping between covariates and future inflation; and u, is a zero-
mean random error. The target function 7} (x;) can be a single model or an ensemble of
different specifications. There is a different mapping for each forecasting horizon.

4These uncertainty =~ measures are available at Sydney C. Ludvigson’s  webpage

(https://www.sydneyludvigson.com/).
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The direct forecasting equation is given by

/ﬁt+h|t = Th,t—Rh—l—l:t(mt)a (2)

where j;h,tthJrl:t is the estimated target function based on data from time ¢t — Rj + 1
up to t and Ry, is the window size, which varies according to the forecasting horizon and
the number of lagged variables in the model. We consider direct forecasts as we do not
make any attempt to predict the covariates. The only exception is the case of the BVAR
model, where joint forecasts for all predictors are computed in a straightforward manner
following the procedure described in Banbura et al. (2010).

The forecasts are based on a rolling window framework of fixed length. However, as
mentioned before, the actual in-sample number of observations depends on the forecasting
horizon. For example, for the 1990-2000 period, the number of observations is R;, = 360 —
h—p—1, where p is the number of lags in the model. For 2001-2015, R, =492—h—p—1.

In addition to three benchmark specifications (RW, AR and UCSV models), we consider
factor-augmented AR models, sparsity-inducing shrinkage estimators (LASSO, adaptive
LASSO, elastic net and adaptive elastic net), other shrinkage methods that do not induce
sparsity (RR and BVAR with Minnesota priors), averaging (ensemble) methods (bagging,
CSR and JMA)® and RF. With respect to the factor-augmented AR models, we consider
in addition to the standard factors computed with principal component analysis a set of
target factors as advocated by Bai & Ng (2008) and boosted factors as in Bai & Ng (2009).
A detailed discussion of the models implemented in this paper can be found in Appendix
B. Finally, we also include in the comparison three different model combination schemes,
namely, simple average, trimmed average and the median of the forecasts.

We find that the RF, a highly nonlinear method, robustly outperforms other methods.
To disentangle the role of variable selection from nonlinearity, we also consider a linear
model where the regressors are selected by the RFs (RF /ordinary least squares, OLS) and
an RF model with regressors preselected by adaptive LASSO (adaLASSO/RF).

Forecasts for the accumulated inflation over the following twelve months is computed,
with the exception of the RW and UCSV models, by aggregating the individual forecasts
for each horizon. In the case of the RW and UCSV models, a different specification is

used to construct the forecast of the 12-month inflation.

4. RESULTS

In this section, we describe our main results for the CPI. More detailed results, robust-
ness checks and a similar set of results for the PCE and the CPI-core can be all found in
the Appendix.

®Bagging and CSR can also be viewed as nonsparsity-inducing shrinkage estimators.
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The models are compared according to three different statistics, namely, the root mean
squared error (RMSE), the mean absolute error (MAE) and the median absolute deviation
from the median (MAD), which are defined for each model and forecasting horizon as

follows:
T

1
RMSE,,,=——— Y & ..
7h T _ TO + 1 t:TO t,m,h

T
1
MAE,, , = ——— S el
h T—T0+1§T:’et’ al
=10

MAD,,, ,, = median [|€; ., — median (€;m1)|] ,

where €, = Tt — Tmp and Ty, s the inflation forecast for month ¢t made by model
m with information up to t — h. The first two performance measures above are the usual
ones in the forecasting literature. MAD, which is less commonly used in empirical papers,
is robust to outliers.

To test whether the forecasts from different models are different, we consider a number
of tests, namely, the model confidence sets (MCS) as proposed in Hansen et al. (2011), the
superior predictive ability (SPA) tests of Hansen (2005), and the multi-horizon uniform
SPA test of Quaedvlieg (2017).

4.1. Overview. In this section, we report an overview of the main findings of the paper.

Tables 2—4 report a number of statistics for each model across all the forecasting hori-
zons, including the accumulated twelve-month horizon. The first three columns report
the average RMSE, the average MAE and the average MAD. Columns (4), (5) and (6)
report the number of times (out of thirteen possible horizons)® each model achieved the
lowest RMSE, MAE, and MAD, respectively. Columns (7)-(10) present, for square and
absolute losses, the average p-values of the MCS based either on the range or the tn.x sta-
tistics. Columns (11) and (12) show the average p-values of the SPA test for the squared
and absolute errors, respectively. Finally, columns (13) and (14) display the p-value of
the uniform multi-horizon test for superior predictive ability and the p-value of the MCS
based on the multi-horizon comparison of the models, respectively. The uniform SPA test
is designed to check for superior performance at each individual horizon. Table 2 shows
the results for the full out-of-sample period (1990-2015), whereas Tables 3 and 4 present
the results for the subsample periods 1990-2000 and 2001-2015, respectively. The bold
figures highlight the best-performing model. The following facts emerge from the tables:

6To be precise, monthly inflation from one month up to twelve months ahead and yearly inflation accu-
mulated over the following twelve months.
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(1) Machine learning models and the use of a large set of predictors are able to sys-
tematically improve the quality of inflation forecasts over traditional benchmarks
in the literature. This is a robust and statistically significant result.

(2) The RF model outperforms all the other alternatives in terms of point statistics.
The superiority of RF is due both to the variable selection mechanism induced
by the method as well as the presence of nonlinearities in the relation between
inflation and its predictors. RF has the lowest RMSEs, MAEs, and MADs across
the horizons and the highest MCS p-values. The RF model also has the highest
p-values in the SPA test, multi-horizon SPA test and multi-horizon MCS. The
improvements over the RW in terms of RMSE, MAE and MAD are almost 30%
and are more pronounced during the second subsample, where inflation volatility
is much higher.

(3) Shrinkage methods also produce more precise forecasts than the benchmarks.
Sparsity-inducing methods are slightly worse than nonsparsity-inducing shrink-
age methods. Overall, the forecasting performance among shrinkage methods is
very similar, and ranking them is difficult.

(4) Factor models are strongly outperformed by other methods. The adoption of
boosting and target factors improves the quality of the forecasts produced by
factor models only marginally. The poor performance of factor models is more
pronounced during the first subsample (low volatility period).

(5) CSR and JMA do not perform well either and are comparable to the factor models.

(6) Forecast ensembles do not bring any significant improvements in any of the per-
formance criteria considered.

(7) In line with Stock & Watson (2007), among the benchmark models, both AR and
UCSV outperform the RW alternative. Furthermore, the UCSV model is slightly

superior to the AR specification.

4.2. Results: Random Forests versus Benchmarks. Tables 5-7 show the results
of the comparison between the RF and the benchmark models. Table 5 presents the
RMSE, MAE and MAD ratios of the AR, UCSV and RF models with respect to the RW
alternative for all the forecasting horizons as well as for the accumulated forecasts over
twelve months. The models with the smallest ratios are highlighted in bold. It is clear
from the table that the RF model has the smallest ratios for all forecasting horizons.

To check whether this is a robust finding across the full out-of-sample period, we also
compute rolling RMSEs, MAEs, and MADs over windows of 48 observations. Table 6
reports the results. The table shows the frequency with which each model achieved the

lowest RMSEs, MAEs and MADs as well as the frequency with which each model was the
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worst-performing alternative among the four competitors. The RF model is the winning
specification and is superior to the competitors for the majority of time periods, including
the Great Recession. In contrast, the RW model delivers the worst forecasts most of the
time. Figures 2, 3, and 4 show the rolling RMSEs, MAEs, and MADs, respectively,
over the out-of-sample period. As expected, the performance of the RW deteriorates as
the forecasting horizon increases. However, the accomplishments of the RFs seem rather
robust.

Finally, Table 7 reports the p-values of the unconditional Giacomini and White (2000)
test for superior predictive ability for squared (panel (a)) and absolute errors (panel (b)).
Rejections of the null mean that the forecasts are significantly different. It is evident from
the table that the RF has forecasts that are significantly different from and superior to

the three benchmark models.

4.3. Results: The Full Picture. In this section, we compare all models. The main
results are shown in Tables 8-10. Table 8 presents the results for the full out-of-sample
period, whereas Tables 9 and 10 present the results for the 1990-2000 and 2000-2015
periods, respectively. The tables report the RMSEs and, between parenthesis, the MAEs
for all models relative to the RW specification. The error measures were calculated from
132 rolling windows covering the 1990-2000 period and 180 rolling windows covering the
20012015 period. Values in bold denote the most accurate model in each horizon. Cells
in gray (blue) show the models included in the 50% MCS using the squared error (absolute
error) as the loss function. The MCSs were constructed based on the maximum ¢ statistic.
The last column in the table reports the number of forecast horizons in which the model
was included in the MCS for the square (absolute) loss. The last two rows in the table
report the number of models included in the MCS for the square and absolute losses.
Several conclusions come out from the tables and we start by analyzing the full out-
of-sample period. Apart from a few short horizons, where either the RF/OLS or the
adaLLASSO/RF alternatives are the winning models, the RF alternative delivers the small-
est ratios in most of the cases. The RF is followed closely by shrinkage models, where RR
seems be superior to the other alternatives. RR, RF and the hybrid linear-RF models are
the only specifications included in the MCS for all forecasting horizons. Neither RF nor
RR impose sparsity, which may corroborate the conclusions of Giannone et al. (2017),
who provide evidence against sparsity in several applications. Factor models have very
poor results and are almost never included in the MCS. When factors are combined with
boosting, there is a small gain, but the results are still greatly inferior to those from RF

and shrinkage models. This is particularly curious as there is a correspondence between
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factor models and RR: RR predictions are weighed combinations of all principal compo-
nent factors of the set of predictors. Several reasons might explain the difference. (1)
lack of clear factor structure in the regressors. This is not the case as shown in Figure
5, where we display the eigenvalues of the covariance matrix of regressors over the fore-
casting period. As can be seen, there is a small number of dominating factors. (2) There
might be factors which explain only a small portion of the total variance of the regressors
but have a high predictive power on inflation. Again, we do not think this is the case
as target factors as well as boosting are specifically designed to enhance the quality of
the predictions but, in this case, do no bring any visible improvement. Furthermore, we
allow the ML methods to select factors as well and, as we are going to show latter, they
are never selected. (3) Finally, which we believe is the most probable explanation is that
although sparsity can be questioned, factor models are a too aggregated representation of
the potential predictors. The results of JMA are not encouraging either. Nevertheless, all
the competing models outperform the RW for almost all horizons. Finally, forecast com-
bination does not provide any significant gain, which can be explained by the empirical
fact that most of the forecasts are positively correlated, as depicted in Figure 6.

Focusing now on the two subsamples, the following conclusions stand out from the
tables. The superiority of RF is more pronounced during the 2000-2015 period, when
inflation is much more volatile. During this period, RF achieves the smallest RMSE and
MAE ratios for almost all horizons. From 1990-2000, the linear shrinkage methods slightly
outperform the RF for short horizons. However, RF dominates for long horizons and for
the twelve-month forecasts. Among the shrinkage models and during the first period,
there is no clear evidence of a single winner. Depending on the horizon, different models
perform the best. Another important fact is that there are fewer models included in the
MSC during the first subsample.

Finally, we test whether the superiority of the RF model with respect to alternative
models depends on the state of the economy. We consider two cases, namely, recessions
versus expansions and high versus low macroeconomic uncertainty. The results of the
test proposed by Giacomini & White (2006) for squared loss functions are presented in
Tables 11 and 12. The tables report the value of the test statistic as well as the respective
p-values. As usual, one, two and three asterisks represent rejection of the null hypothesis
at 10%, 5%, and 1% significance levels, respectively. In Table 11, the results for expansion
periods versus recessions are presented, whereas in Table 12, we consider periods of high
macroeconomic uncertainty versus periods of low macroeconomic uncertainty. Periods of
high (low) macroeconomic uncertainty are those where uncertainty is higher (lower) than
the historical average. For conciseness, we display only the results for the most relevant

models.
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Inspecting the tables, it is clear that the majority of the statistics are negative, meaning
that the RF model is superior than its competitors. For instance, out of 72 entries in each
table, the values of the statistics are positive only in four (Table 11) and seven cases
(Table 12). However, the differences are not statistically significant during recessions.
This result is not surprising as only 34 of the 312 out-of-sample observations are labeled
as recessions. Nevertheless, the magnitudes of the differences are much higher during
recessions. Turning attention now to periods of high (low) macroeconomic uncertainty,
it is evident from Table 12 that the RF model is statistically superior to the benchmark
models for both periods, and as in the previous case, the differences are higher in periods
of greater uncertainty. As argued above, both the degrees of slackness and uncertainty
might be sources of nonlinearities in the economy. The fact that the RF model outperforms
competitors in these states of the economy suggests that allowing for nonlinearities is key

to improving macroeconomic forecasts.

4.4. Opening the Black Box: Variable Selection. In this section, we compare the
predictors selected by some of the ML methods, namely, adaLASSO, ridge and RFs.
We select these three models for two reasons. First, they are generally the three best-
performing models, and second, they have quite different characteristics: while adaLASSO
is a true sparsity-inducing method, RR and RF models are only approximately sparse.
RR is a linear model, and RF is a highly nonlinear specification.

In principle, this analysis is straightforward with sparsity-inducing shrinkage methods
such as the adalLASSO, as the coefficients of potentially irrelevant variables are automat-

" For the other ML methods, the analysis is more complex. To keep

ically set to zero.
the results among models comparable, we adopt the following strategy. For ridge and
adalLASSO, the relative importance measure is computed as the average coefficient size
(divided by the respective standard deviations of the regressors). To measure the im-
portance of each variable for the RF models, we use out-of-bag (OOB) samples.® When
the bth tree is grown, the OOB samples are passed down the tree and the prediction
accuracy is recorded. Then, the values of the jth variable are randomly permuted in the
OOB sample, and the accuracy is again computed. The decrease in accuracy due to the
permutation is averaged over all trees and is the measure of the importance of the jth

variable in the RF'.

"Medeiros & Mendes (2016) showed, for example, that under sparsity conditions, the adalLASSO model
selection is consistent for high-dimensional time series models in very general settings, i.e., the method
correctly selects the “true” set of regressors.
8For a given data point (y:, x;), the OOB sample is the collection of all bootstrap samples that do not
include (1, z}).
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Due to space constraints, we cannot show the relative importance for each variable,
each lag, each horizon or each estimation window. Therefore, as described in Appendix
A, and following McCracken & Ng (2016), we categorize the variables, including lags,
into the following eight groups: (i) output and income; (ii) labor market; (iii) housing;
(iv) consumption, orders and inventories; (v) money and credit; (vi) interest and exchange
rates; (vil) prices; and (viii) stock market. We also consider two additional groups, namely,
the principal component factors and autoregressive terms. Furthermore, the results are
averaged across all estimation windows.

Figure 7 shows the importance of each variable group for the ridge, adalLASSO, and
RF methods for all the twelve forecasting horizons. For all different methods, the values
in the plots are re-scaled to sum tone.

The set of the most relevant variables for RR and RF models is quite stable across
forecasting horizons but is remarkably different between the two specifications. While for
RR, AR terms, prices and employment are the most important predictors, RF models give
more importance to prices, interest-exchange rates, employment and housing. LASSO
selection is quite different across forecasting horizons, and only AR terms retain their
relative importance independent of the horizon. Prices gradually lose their relevance
until up to six-months-ahead and partially recover relevance when longer horizons are
considered. Output-income are more important for medium-term forecasts. Finally, none
of the three classes of models selects either factors or stocks. This result may indicate that
the high level of cross-section aggregation of the factors is causing the poor performance.

To compare the degree of sparsity of each model, we report word clouds of the selected

variables in Appendix C.1.

5. CONCLUSIONS

We show that with the recent advances in ML methods and the availability of new
and rich datasets, it is possible to improve inflation forecasts. Models such as LASSO,
bagging, RF and others are able to produce more accurate forecasts than the standard
benchmarks. These results highlight the benefits of ML methods and rich datasets for
macroeconomic forecasting. Although our paper focuses on inflation forecasting in the
US, one can easily apply ML methods to forecast other macroeconomic series in a variety
of countries. We leave for further research the question as to whether ML methods can
systematically outperform standard methods when other macroeconomic series, such as
industrial production, and countries are considered.

The RF method deserves special attention as it delivers the smallest errors for most

forecasting horizons in the two out-of-sample periods (1990-1999 and 2001-2015). The
14



good performance of the RF is due both to potential nonlinearities in the relationship
between inflation and its predictors and the variable selection mechanism of such a model.

The selection of variables for RF models is quite stable across forecasting horizons.
These variables are mostly selected from the following four groups of variables: prices, ex-
change and interest rates, housing and labor market. Although it is difficult to disentangle
the precise sources of nonlinearities that the RF method uncovers, this variable selection
may shed light on them. In fact, there are many theoretical reasons that nonlinearities
may be induced among inflation, interest rate, labor market outcomes and housing. For
example, the relationship between inflation and employment depends on the degree of
slackness in the economy. In addition, as we argued above, uncertainty might induce
nonlinearities among these variables. Finally, part of the out-of-sample window encom-
passes quarters when the zero lower bound on nominal interest rates is binding, which
is another source of nonlinearity. This out-of-sample window also encompasses a period
in which a housing bubble led to a credit crunch, which are events with highly nonlinear
consequences.

The RF is the winning method not only in the full sample but also in the periods
of expansion and recession as well as low uncertainty and high uncertainty. Relative
to other methods, the RF performs particularly well in periods of high uncertainty. In
addition, the RF also outperforms other methods during and after the Great Recession,
when uncertainty skyrocketed and when the zero lower bound was binding. Altogether,
these results suggest that the relationships among key macroeconomic variables might
be highly nonlinear. If this is the case, the various linear methods widely applied in
the profession not only to forecast variables but also to achieve other objectives such as
approximate DSGE models might lead to inaccurate results.

Finally, in this paper, we focus on the RF model due to its flexibility and scalability
for very large datasets. Nevertheless, alternative nonlinear methods such as deep learning

and other semiparametric models should also be considered in future work.
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TABLES AND FIGURES

FIGURE 1. Inflation rate (CPI, PCE and CPI core) from 1960 to 2015.

The figure shows the time evolution of the consumer price index (CPI), the personal consumption ex-
penditures (PCE) and the core CPI inflation measures from January 1960 to December 2015 (672 ob-
servations). Inflation is computed as 7 = log(p:) — log(p:—1), where p; represents each one of the price

measures considered in this paper. Shaded areas represent recession periods.

1d0

Legend
Expansion

30d

Recession

Inflation %
o

34021dD

1963 1969 1975 1981 1987 1993 1999 2005 2011 2017
Time

19



918°01 097°6 1¢€°6 G66°TT L8C'TT S6V'TT €LG°8 G6I'8 ¥L0®  €E6'T  LECO G61TF 6£€0 9¢DV
G86°0 186°0 ¥.L6°0 166°0 886°0 986°0 1860  846°0 LL6°0 ¢L6°0 ¥#9¢°0 8¢6'0 T¥vr0 1DV
0r8°0 189°0 GgGee’o LV8°0 169°0 84 0 €060 6cL0 T¥9'0 TCL91- B6EV- 8L6'T- 98L1- UIN
1,670 Gge6°0 9280 1¢T'T VLT ¢a0'l LET'T ¢eEV'T  6vS'T  8PL'8  SPST  ¢9Eed L9E€T XN
8G8°0 0cL 0 809°0 006°0 6LL°0 €79°0 ¢G6'0 6980 <CI®0 990¢ 0¢r1'0 ¥L0C 1I8T'0 UBIPIIN
¥7¢0°0 L¥0°0 €60°0 €60°0 ¢60°0 060°0 €600  6VI'0 88T'0  LLGV €0L0 LEE'T 0CE0 PS
998°0 €L 0 ¥¢9°0 S16°0 ¢08°0 £€99°0 ¢L6'0 8¢6'0 98’0 G090 GP0'0 O0€T'C ©CLT'O0 U\
ST0Z-1002Z :@[dureg puoodsg
1¢¢ 01 €98 0969 9,791 9¢891 €LC°G1 L6¢'ce  089'Tc ¥S¥'1c 6876  TI€T ¢€87'S 8L9'T 9E€DV
9.6°0 966°0 9¢6°0 166°0 186°0 186°0 066'0 9860 €860 6€6'0 GL00 €680 6¢c0 IOV
9¢8°0 199°0 6€5°0 €48°0 989°0 16670 606'0  G¥L°0 6990 ¢99€- €ELI'T- L9€T 8G0°0- UIA
688°0 1LL°0 €.9°0 GG6°0 ¢06°0 LLLO I80°T  @€¢'T LLZ'T 868 9¢0'c L9099 9760 XBIN
658°0 20L°0 ¥65°0 6.8°0 €cL0 2890 6.6'0  ¢c6'0 6980 €9I'v  GEE'0 ¢8LC VIEO0 UBIPON
9100 9200 6¢0°0 1€0°0 G600 ¢s00 8600  0ST'0 ¥8T'0 ¢cev'c SIS0 CGI80 891°0 PS
2680 TT1L°0 L6970 168°0 VL0 609°0 G86°0  I¥6'0 L6880 868'E ¢0€'0 68LC Gvc'0 URN
000Z-0661 :9[dwres 3sitg
096°'TT  OP9'TT  SG67'11 906 V1 Geaal 09¥°G1 6L8°GT  €VLPI 84EPI 0869 LcL'T 6L0G <TI0 9OV
G86°0 6,670 696°0 ¢66°0 686°0 286°0 ¢66'0 8860 L86'0 €L6°0 GPC0 9¢60 SIv0o 1DV
9¢8°0 199°0 664°0 LV8°0 989°0 1660 €060 6¢L0 1¥9°0 TCL9T- 86ET- 8L6'T- 98L°1- UIN
1,670 Gge6°0 9280 1¢T'T VLT'T ¢a0'l LET'T cevV'l  6vS'T 866’8  9¢0°¢ L9099 L9E€'T XeIN
3680 1.0 1090 268°0 €9.°0 €29°0 ¥96°0 ¢88°0 L¢80 199'¢c L8T'0 699'¢ 10¢'0 UBIPIN
¢a0°0 170°0 970°0 700 €80°0 180°0 G600  6¥I'0 98T°0 I8T¥ ¢P90 661°T 89C0 PS
¢98°0 ¢l 0 €19°0 G06°0 6LL°0 0v9°0 6,60 ¥€6'0 1680 6¢6'T ¥ST'0 G6E€¢C €0C'0 UBN
S102—0661 :o[dureg [[ng
ANHV_N@_\\N Amv_mm‘_s AHV_mw‘_\\N ANHVOUNE\\N AmVoLumE\\N Aﬁvo_umE\\N ANﬁvcz\\N Am.vc_t\w Aﬁvcz\\w wn__maq ﬁn__q ﬁm:w 1y Uﬁmﬂpﬁam

[e9I PU® [RIDUWRUTJ ‘OTWIOWOIDOIIRU JO SoInsestt pue ‘(*d|ely) uorponpoid TeLIysnpur jo moIs yjuour-oaomy) ‘(*q|y) uoronpold [eLIIsNpuUI Jo [moId
Aqyuour ‘(#2Tw) woryepur yiuour-oAom) IJD) ‘(*2d) uorjegur ATyjuont [0 :A[PUIRT ‘SO[(RIIEA SOTUIOUOISOIIRU [RISADS 10J (9€)Y) SUOIIR[IIIOIOIE
9¢ 9sI7 9} Jo wms pue ‘(IDY) UOIIR[ALIOD0INE IDOPIO-ISIY ‘TUNIIIUIH ‘WNWIXeW ‘URIpawl ‘(Pg) UOIIRIASD pIlepue)s ‘ueawi o1y syIodel aqe) o],

$o19819R)Q 2ATYdIINSo(] T AIdV],

“STIUOUI 9AJOM) PUR 9DIY} ‘OUO I0] Ajurelraoun

]
N



688°0 L08°0 169°0 6850 9LL°0 L£8°0 71L°0 129°0 ¢ 1 ¢ €IL°0 9FL0 T1SL0  JAH/OSSVTepe
£96°0 £96°0 9150 70570 7890 78L°0 s 0 6250 0 I I 98L°0 0LL°0  29L°0 ST10/d4
688°0 7080 6050 L9€°0 7290 16270 2050 STV 0 0 0 0 140 F9L°0 69L°0 UBIPOIN
9z8°0 9280 1660 PI¥°0 G890 8GL°0 L1670 1€9°0 0 0 0 0€L°0 €920 89.°0 UedN'L
688°0 0£8°0 19%°0 167°0 L09°0 99.°0 z£8°0 925°0 0 0 0 TSL0  ©9L°0  69L°0 uedly

! T P60 €€6°0 £€96°0 £¥6°0 6¥L°0 TIL0 9 11 6 269°0 TE€L0 LELO0 Y
000°0 0000 7000 L20°0 8120 Ge9'0 z01°0 7T 0 0 0 0 0760 8.80 8380 Sumsoog
0000 0000 1000 110°0 00T°0 €1€°0 7200 78070 0 0 0 798°0 7980 6280 10308 T,
000°0 0000 110°0 6%0°0 LET0 z8¢°0 76070 6L1°0 0 0 0 €E8°0  L88°0 CES0  I0pvq
0000 0000 0000 81070 G900 61270 81070 00T°0 0 0 0 6960 SI6°0 0.L8°0 VINL
0000 0000 €900 0vT0 T6€°0 629°0 L8T0 €680 0 0 0 6LL°0 €180 8IS0 USD
1£0°0 L£0°0 61070 1110 €1€°0 129°0 €10 7ee0 0 0 0 G.8°0 0880 €G6L0 Suisseg
9¢0°0 9¢0°0 GPT0 GeT 0 2080 €1L0 6Ge0 8270 0 0 0 08L°0 IS0 66L0 HVAL
86£°0 8620 G0G°0 96¥°0 9290 1870 T80 6850 0 0 0 $LL°0  €9L0 T9L0 oSpry
87070 87070 98¢0 70270 0590 L0 LL¥0 L9€°0 z 0 0 8€L°0 GLL0 TI8L0 urgepe
688°0 6880 PL1°0 8L1°0 0€8°0 veL0 020 020 z 0 0 02L°0 T6L0 08L0 IONIHA
¥8T°0 ¥8T°0 GGE0 110 L£9°0 10L°0 6770 7€e0 0 0 0 9FL0 CLL0  €8L°0 OSSVTEpe
680 620 Z61°0 091°0 0¥S°0 1770 6%€°0 01€°0 0 0 0 ¥2L0  98L°0 08L°0 OSSVT
0000 0000 62070 L¥0°0 9%¢°0 ze80 eF1°0 2020 0 0 0 9¢8°0 SIS0 SIS0 ASDN
00070 0000 800°0 960°0 Gez 0 17570 L3070 9220 0 0 0 6FL°0 8E8°0 €80 UV
0000 0000 00070 0100 €500 9110 L10°0 1110 0 0 0 000°T 000 0001 AN
9509 [opou sqe bs sqe xeur], bs xewy sqeoSuer bsoSuwer QYN AVIN HSINY AVIN HAVIN HSINY PPOIN
ard ard ‘ard ene ard ceae ‘adose  cad eae atd ceae cacd ceaw UMW # UMW # U # - 0AR AR "oAR

(¥1) (1) (1) (11) (o1) (6) (8) (2) (9) () (1) (€) (@) (1)

VdS UOZLIOH -

Aqy pead dng

109§ 90UPYUO)) [OPOIN

UOISIAI] SUIISBIDIO]

(vdS) £aqiqe aatyorpaid Iotadns a1y Jo senfea d a3eiaar o) moys (gI) pue (TT) suwnio) “(110g) ‘T8 1° UeSURH Ul PAqLIISIP se So1siye)s xey o)
10 93ueJ 9} U0 IAY)Ie paseq sanfea d a8rIoAr oY) ‘sasso] aInjosqe puer arenbs 1of quasead (OT)—(L) summio) Aparoadsar ‘qQyIN Pue ‘HVIN ‘ASINY
1S9MOT 9T[) PIASITDR [OPOUIL [ORS (SUOZLIOY SSOIOR) SowIl) Jo Ioquinu oy 11odal (9) pue (g) ‘(f) suwmio)) *(VIA) UOIIRIASD 99N[OSCR URIPIUT dFRIOA®R
o) pue (HVIN) 101D 9Injosqe ueawl oFeiosr o) ‘(HSINY) 10110 arenbs uesw 001 dgeroar o) 1odal (¢) pue (z) (I) suwmnio) ‘UOZLIOY [IUOW
-OAJOM) PRYR[NUINIOE 9] SUIPN[OUI ‘SUOZLIOY SUI)SLIDIO] o1} [[8 SSOIde S$O19S1IR)S ATRUITINS JUSISHIP JO ISqUINU © [opoul 1oro 10] s110dol a[qe) oY,

“(210) Seyapeeny) Aq
posodoxd £yiqiqe oaryorpaid Io110dns 10§ 1899 WOZLIOY-TY[NW o1} Jo onfea-d oy Aefdsip (§1) pue (g1) suwniod ‘Areur *(goog) uesuey £q pasodoid §soy

CT10Z-0661 woij porrad ojdures-Jo-yno a1} I0J SO1ISIYR)S ATRTIWING S)NSOY SUIPSeIdDI0] g A4V ],

21



¥6L°0 L2T°0 9790 GeL’0 9.8°0 8L8°0 9¢L'0 08L°0 € 4 4 €0L0 9780 <TI0 JAH/OSSVTepe
6,70 6,70 0150 €590 L68°0 0880 €¢9°0 169°0 0 1 0 GER'0 L9870 T80 STO/AM
76L°0 1.0 107°0 6.7°0 8¢8°0 Ga8'0 LV 0 99¢°0 0 0 0 €PL0  €L8°0 LT80 URIPIN
GLLO GLLO 107°0 6,570 9780 898°0 Siaay €190 0 0 I G7L°0 0L8°0 GC80 UedN'L
6.7°0 €EV°0 6L5°0 ¥69°0 7780 €L8°0 6290 669°0 0 0 0 1270 ¢98°0 0c¢8'0 UedN

T T L26°0 186°0 426°0 9.6°0 LS80 S16°0 g 9 g GG9°0 1280 €6L°0 Jd
00070 00070 0200 Ge0'0 €9¢°0 697°0 0€2'0 8¢€0 0 0 0 POI'T TIT'T 7001 Sunsoog
00070 0000 00070 100°0 LL0°0 €910 60070 ¥¢0°0 0 0 0 €L8°0 TCI'T  L00'T JI0p®d "L
00070 00070 910°0 600°0 G81°0 ¥8¢°0 L8070 6L0°0 0 0 0 ¢06'0  LSO'T  0L6°0 Iojomrq
00070 000°0 ¢00°0 €000 ¥81°0 a0¢0 LL0°0 €60°0 0 0 0 GOT'T ¢60'T GSO'T  VINC
¥6L°0 76L°0 81¢°0 90€°0 6090 91L°0 €€e0 96€°0 0 0 4 8080 0060 6780 USD
1100 5000 ¢oT0 L0 P19°0 1050 §I7°0 1820 0 0 0  6V60 €V6'0 L06°0 Suddeg
€8T°0 €81°0 G010 0€T°0 89¢€°0 ¢95°0 11€°0 L6€°0 1 I 0 G6L°0  LIO'T 6660 UVAL
76L°0 765°0 €97°0 a87°0 0LL°0 608°0 9L4°0 6€5°0 0 0 4 G08'0 TL80 9280 99pry
¥6L°0 ¢eL0 ¢€s0 6.7°0 €880 €€8°0 ¥¢9°0 G090 0 ¢ 0 €GL’0 V.80 €EP80  IeU[Hepe
£00°0 L0070 8¢0°0 €L0°0 §ge’0 8€G°0 L0T°0 910 1 0 0 GcL0 TL6°0 0680 INIH
GLL0 €LL0 7€4°0 987°0 968°0 058°0 G290 S19°0 1 1 1 ¢LL’0 ¥98°0 8EROD OSSVTep®
0000 0000 1200 170°0 6870 L19°0 ¢cl0 L8T°0 0 0 0 0vL'0 Ly60 680 OSSV'I
9€0°0 9€0°0 8LC°0 ¥81°0 1€4°0 L99°0 9870 8070 0 0 0 780 6880 6480 ASDN
110°0 110°0 L60°0 9€¢'0 614°0 10470 11¢°0 9€7°0 4 0 0 60L°0 ¥26°0 T.L80 UV
0000 000°0 6100 ¥10°0 6170 €LE0 LET0 9.1°0 0 0 0 000°'T 000°T 000T MY
1893 [opout sqe bs sqe xeur, bs xewr], sqe sfuer bs oguer dvIN  dVIN  dSINYd dVIN dVIN HSINY  [PPOIN
ard ard ‘ard ene ard ceae ‘adose  cad eae atd ceae cacd ceaw UMW # UMW # U # - 0AR AR "oAR
(rD) (€1 (z1) (1D (01) (6) (8) (L) (9) (©) (6 (@ @

VdS UOZLIOH -

Aqy pead dng

109§ 90UPYUO)) [OPOIN

UOISIAI] SUIISBIDIO]

(vdS) £aqiqe aatyorpaid Iotadns a1y Jo senfea d a3eiaar o) moys (gI) pue (TT) suwnio) “(110g) ‘T8 1° UeSURH Ul PAqLIISIP se So1siye)s xey o)
10 93ueJ 9} U0 IAY)Ie paseq sanfea d a8rIoAr oY) ‘sasso] aInjosqe puer arenbs 1of quasead (OT)—(L) summio) Aparoadsar ‘qQyIN Pue ‘HVIN ‘ASINY
1S9MOT 9T[) PIASITDR [OPOUIL [ORS (SUOZLIOY SSOIOR) SowIl) Jo Ioquinu oy 11odal (9) pue (g) ‘(f) suwmio)) *(VIA) UOIIRIASD 99N[OSCR URIPIUT dFRIOA®R
o) pue (HVIN) 101D 9Injosqe ueawl oFeiosr o) ‘(HSINY) 10110 arenbs uesw 001 dgeroar o) 1odal (¢) pue (z) (I) suwmnio) ‘UOZLIOY [IUOW
-OAJOM) PRYR[NUINIOE 9] SUIPN[OUI ‘SUOZLIOY SUI)SLIDIO] o1} [[8 SSOIde S$O19S1IR)S ATRUITINS JUSISHIP JO ISqUINU © [opoul 1oro 10] s110dol a[qe) oY,

“(210) Seyapeeny) Aq
posodoxd £yiqiqe oaryorpaid Io110dns 10§ 1899 WOZLIOY-TY[NW o1} Jo onfea-d oy Aefdsip (§1) pue (g1) suwniod ‘Areur *(goog) uesuey £q pasodoid §soy

00020661 woj porrad ojdures-Jo-jno o) 10J SOIPSIPe)S ATRTWING :SHNSY SuIIsedaIo] ‘¢ ATdV],

22



¢66°0 ¢66°0 §49°0 ¥19°0 8880 €16'0 8¢L'0 ¥89°0 0 € € 889'0 TIL'0 FL0O JAYM/OSSVTepe
G660 1.6°0 €¢9°0 Ges’0 68L°0 ¥68°0 SvL0 0¥9°0 0 1 1 7890 G6L°0  859L°0 ST0/dY
986°0 986°0 61L°0 VLV0 7280 0L8°0 0990 6€4°0 0 0 0 €890 9TL0 6GL°0 UeRIPIN
€86°0 €86°0 0180 G140 €€8°0 V.80 ¥eL 0 8740 0 0 0 0890 ¥CL0 6GL°0 WeN'L
986°0 9L6°0 8L4°0 9050 G6.°0 0980 6950 09¢°0 0 1 0 7690 66,0 T9.°0 UBN

T T 606°0 ¢e6°0 296°0 ¢S6°0 298°0 LE8°0 € 8 6 969°0 869°0 8c¢L'0 JY
¢00°0 ¢00°0 L80°0 L0 e840 1280 66€°0 L97°0 1 0 0 €9L°0 T6L0 G6L0 Sumsoogq
¢100 ¢100 ¢ST1°0 GLT°0 6870 0€9°0 G1€'0 18¢°0 (4 0 0 ¥ELO  L9L°0  G6L°0 10998 "L
100°0 100°0 L80°0 1€1°0 0vv'0 L6970 89¢°0 LLE°0 0 0 0 ¢rL’0 €8L°0 0180 10%%]
¢00°0 ¢000 110°0 L2070 0€T°0 9o LL0°0 16¢°0 0 0 0 198°0 ¢S8°0 LESD VINL
00070 00070 L2T°0 ¥91°0 897°0 ¥¢9°0 90€°0 8170 0 0 0 PILO0 I8L°0 €180 HUSD
981°0 981°0 15070 7€c0 G1e"0 09L°0 Lve0 09¢°0 0 0 0 G8L0 68L0 GLL0 Swddeq
99.°0 99.°0 887°0 06¢°0 ¢e8°0 198°0 0690 GL70 1 0 0 8890 LEL0  €LL0 UVAL
90¢°0 9020 769°0 9¢9°0 €080 7780 G6L'0 ¢L90 1 0 0 2890 LTL0 TGL0 99pry
ceT’o0 ¢eT’0 66e0 ¥9¢°0 91L°0 8€8°0 76470 0970 0 0 0 6690 66L°0 TLL0 OUHeEpP®
¢66°0 7.6°0 11.°0 €ero €180 GL8°0 9¢L'0 €190 € 0 0 €99°0 92L°0 09L°0 INIH
981°0 I8T°0 00€°0 G600 699°0 ¥8L°0 V.Lv0 ¥ev o 0 0 0 ¥0L'0  €vL'0  €LL°0  OSSVTIePe
G660 ¢L60 0€9°0 Lv€0 86.°0 9.8°0 ¢0L0 €870 [4 0 0 090 8.0 ¢9.0 OSSVT
00070 00070 €900 L8070 §6€°0 9650 9¢¢’0 ¢Lc’0 0 0 0 66L°0 88L°0 G080 ASDN
00070 00070 ¢c00 L9070 8¢¢'0 V160 L0T°0 80€°0 0 0 0 ¥6L°0  L080 880 UV
0000 0000 0000 ¥10°0 L60°0 LET0 £00°0 LET0 0 0 0 000°T 000T 000T MY
1893 [opout sqe bs sqe xeur, bs xewr], sqe sfuer bs oguer dvIN  dVIN  dSINYd dVIN dVIN HSINY  [PPOIN
ard ard ‘ard ene ard ceae ‘adose  cad eae atd ceae cacd ceaw UMW # UMW # U # - 0AR AR "oAR
(rD) (€1) (1) (1) (01) (6) (8) (2) (9) (©) ) () (& (1)

VdS UOZLIOH -

Aqy pead dng

109§ 90UPYUO)) [OPOIN

UOISIAI] SUIISBIDIO]

(vdS) £aqiqe aatyorpaid Iotadns a1y Jo senfea d a3eiaar o) moys (gI) pue (TT) suwnio) “(110g) ‘T8 1° UeSURH Ul PAqLIISIP se So1siye)s xey o)
10 93ueJ 9} U0 IAY)Ie paseq sanfea d a8rIoAr oY) ‘sasso] aInjosqe puer arenbs 1of quasead (OT)—(L) summio) Aparoadsar ‘qQyIN Pue ‘HVIN ‘ASINY
1S9MOT 9T[) PIASITDR [OPOUIL [ORS (SUOZLIOY SSOIOR) SowIl) Jo Ioquinu oy 11odal (9) pue (g) ‘(f) suwmio)) *(VIA) UOIIRIASD 99N[OSCR URIPIUT dFRIOA®R
o) pue (HVIN) 101D 9Injosqe ueawl oFeiosr o) ‘(HSINY) 10110 arenbs uesw 001 dgeroar o) 1odal (¢) pue (z) (I) suwmnio) ‘UOZLIOY [IUOW
-OAJOM) PRYR[NUINIOE 9] SUIPN[OUI ‘SUOZLIOY SUI)SLIDIO] o1} [[8 SSOIde S$O19S1IR)S ATRUITINS JUSISHIP JO ISqUINU © [opoul 1oro 10] s110dol a[qe) oY,

“(210) Seyapeeny) Aq
posodoxd £yiqiqe oaryorpaid Io110dns 10§ 1899 WOZLIOY-TY[NW o1} Jo onfea-d oy Aefdsip (§1) pue (g1) suwniod ‘Areur *(goog) uesuey £q pasodoid §soy

C10Z-1007 woiy porrad ojdures-Jo-yno a1} I0J SO1ISIYR)s ATRTIWNG S)NSOY SUIISeIdDI0] "f AI1dV],

23



TABLE 5. Forecasting Results: RMSE, MAE and MAD Ratios (1990-2015)

The table reports the root mean squared error (RMSE), mean absolute error (MAE) and median absolute

deviation from the median (MAD) ratios with respect to the random walk model for the full out-of-sample

period (1990-2015). The statistics for the best-performing model are highlighted in bold.

Model

Panel (a): RMSE Ratio
Forecasting Horizon

1

2

3

4

5 6 7 8 9

10

11

12 Acc.

AR
UCsv
RF

Model

0.902
0.954
0.844

0.809
0.816
0.731

0.790
0.797
0.706

0.805
0.813
0.738

0.786 0.791 0.783 0.764 0.779
0.783 0.777 0.784 0.776 0.770
0.711 0.715 0.718 0.712 0.722

Panel (b): MAE Ratio
Forecasting Horizon

0.824
0.804
0.763

0.837
0.832
0.773

0.753 1.218
0.781 0.908
0.685 0.766

1

4

5 6 7 8 9

10

11

12 Acc.

AR
UCsv
RF

Model

0.874
0.911
0.811

0.791
0.817
0.721

0.782
0.786
0.711

0.805
0.803
0.749

0.802 0.806 0.777 0.760 0.807
0.801 0.795 0.796 0.787 0.784
0.727 0.728 0.699 0.681 0.717

Panel (c): MAD Ratio
Forecasting Horizon

0.847
0.799
0.747

0.861
0.851
0.767

0.764 1.220
0.777 0.894
0.668 0.774

5 6 7 8 9

10

11

12 Acc.

AR
UCSsv
RF

0.738
0.876
0.698

0.703
0.770
0.633

0.815
0.832
0.772

0.822
0.906
0.841

0.828 0.755 0.664 0.685 0.767
0.878 0.790 0.761 0.835 0.857
0.750 0.728 0.653 0.639 0.728

0.697
0.829
0.685

0.769
0.884
0.706

0.600 0.889
0.777 0.876
0.575 0.587
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TABLE 6. Forecasting Results: Ranking of Models (1990-2015)

The table reports the frequency with which each model achieved the best (worst) performance statistics
over a rolling window period of four years (48 observations).
Panel (a): Lowest Rolling RMSE

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.083
AR 0.083 0.049 0.000 0.158 0.011 0.011 0.098 0.177 0.117 0.128 0.113 0.000 0.000
UCSV 0.023 0.049 0.211 0.098 0.181 0.109 0.004 0.030 0.192 0.109 0.094 0.000 0.236
RF 0.894 0.902 0.789 0.743 0.808 0.879 0.898 0.792 0.691 0.762 0.755 1.000 0.681

Panel (b): Lowest Rolling MAE
Forecasting Horizon

Model 1 2 3 4 ) 6 7 8 9 10 11 12 Acc.

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.039
AR 0.166 0.034 0.000 0.049 0.000 0.023 0.098 0.136 0.132 0.064 0.049 0.023 0.000
UCSV 0.151 0.177 0.257 0.226 0.151 0.155 0.000 0.072 0.242 0.226 0.094 0.023 0.201
RF 0.683 0.789 0.743 0.725 0.849 0.823 0.902 0.792 0.626 0.709 0.762 0.955 0.760

Panel (c): Lowest Rolling MAD
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.136 0.000 0.034 0.000 0.091 0.045 0.004 0.000 0.034 0.053 0.026 0.045 0.020
AR 0234 0.162 0.234 0.230 0.121 0.234 0.264 0.321 0.109 0.147 0.423 0.234 0.039
UCSV 0.038 0.192 0.268 0.328 0.094 0.117 0.034 0.008 0.219 0.087 0.034 0.019 0.051
RF 0.592 0.645 0.464 0.442 0.694 0.604 0.698 0.672 0.638 0.713 0.517 0.702 0.890

Panel (d): Highest Rolling RMSE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.823 0.985 0.936 0.992 0.977 0.996 1.000 1.000 0.864 0.804 0.713 0.849 0.000
AR 0.000 0.004 0.057 0.008 0.023 0.004 0.000 0.000 0.136 0.189 0.287 0.151 0.969
UCSV 0.177 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031
RF 0.000 0.011 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Panel (e): Highest Rolling MAE
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.898 0.943 0.864 1.000 0.992 0.966 1.000 0.943 0.819 0.728 0.687 0.770 0.031
AR 0.083 0.034 0.128 0.000 0.008 0.034 0.000 0.057 0.181 0.272 0.283 0.230 0.862
UCSvV 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.106
RF 0.000 0.023 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000

Panel (f): Highest Rolling MAD
Forecasting Horizon

Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.683 0.940 0.853 0.804 0.796 0.657 0.811 0.943 0.774 0.804 0.789 0.921 0.315
AR 0.053 0.026 0.117 0.098 0.102 0.068 0.042 0.019 0.098 0.034 0.019 0.008 0.512
UCSV 0.215 0.034 0.026 0.098 0.042 0.260 0.140 0.038 0.106 0.143 0.192 0.072 0.173
RF 0.049 0.000 0.004 0.000 0.060 0.015 0.008 0.000 0.023 0.019 0.000 0.000 0.000
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TABLE 7. Forecasting Results: Superior Predictive Ability Test (1990-2015)

The table reports the p-values of the unconditional Giacomini-White test for superior predictive ability
between the random forest models and each of the benchmark models. The test is based on the full
out-of-sample period. Panel (a) presents the results for squared errors, while panel (b) shows the results
for absolute errors.

Panel (a): Giacomini-White Test (Sq. Errors)
Forecasting Horizon
Model 1 2 3 4 ) 6 7 8 9 10 11 12 Acc.
RW 0.003 0.000 0.000 0.001 0.006 0.012 0.010 0.003 0.003 0.027 0.024 0.001 0.049
AR 0.002 0.010 0.023 0.045 0.024 0.024 0.056 0.075 0.047 0.062 0.008 0.000 0.021
UCSV 0.003 0.003 0.013 0.055 0.055 0.024 0.001 0.000 0.003 0.038 0.002 0.000 0.072

Panel (b): Giacomini-White Test (Abs. Errors)
Forecasting Horizon
Model 1 2 3 4 ) 6 7 8 9 10 11 12 Acc.
RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023
AR 0.000 0.000 0.001 0.012 0.002 0.005 0.009 0.017 0.007 0.004 0.000 0.000 0.000
UCSV 0.000 0.000 0.010 0.029 0.003 0.007 0.000 0.000 0.007 0.054 0.008 0.000 0.078
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F1GURE 2. Rolling RMSE.

The figure displays the root mean squared errors (RMSE) computed over rolling windows of 48 observa-
tions. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b) displays the results
for six-months-ahead forecasts (h = 6), panel (c) displays the results for twelve-months-ahead forecasts
(h = 12), and finally, Panel (d) displays the results for the accumulated twelve month forecasts.

%1073 Rolling RMSE - h=1 %1073 Rolling RMSE - h=6

RMSE

1995-01 2000-01 2005-01 2010-01 2015-01 1995-01 2000-01 2005-01 2010-01 2015-01
date date

(a) (b)

%102 Rolling RMSE - h=12 Rolling RMSE - Acc

0.035

0.03

0.025

0.02

RMSE

0.015 |

0.01 .

0.005

1995-01 2000-01 2005-01 2010-01 2015-01 1995-01 2000-01 2005-01 2010-01
date date

(c) (d)
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FicURE 3. Rolling MAE.

The figure displays the mean absolute errors (MAE) computed over rolling windows of 48 observations.

Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b) displays the results for six-
months-ahead forecasts (h = 6), panel (c) displays the results for twelve-months-ahead forecasts (h = 12),
and finally, panel (d) displays the results for the accumulated twelve month forecasts.
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35
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F1GURE 4. Rolling MAD.

The figure displays the mean absolute deviation from the median (MAD) computed over rolling windows

of 48 observations. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b) displays

the results for six-months-ahead forecasts (h = 6), Panel (c) displays the results for twelve-months-ahead

forecasts (h = 12), and finally, panel (d) displays the results for the accumulated twelve month forecasts.
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TABLE 8. Forecasting Errors for the CPI from 1990 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors
(MAE) for all models relative to the random walk (RW). The error measures were calculated from 132
rolling windows covering the 1990-2000 period and 180 rolling windows covering the 2001-2015 period.
Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models
included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.
The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in
how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table report how many models were included in the MCS for square and absolute losses.
Consumer Price Index 1990-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSEcount

(MAE count)
RW 100 100 100 100 1.00 100 100 100 100 100 1.00 1.00 | 1.00 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) = (1.00) (1)
AR 090 081 [ 079 081 079 079 078 076 078 082 084 075 122 9
(0.87) (0.79) (0.78) (0.81) (0.80) (0.81) (0.78) (0.76) (0.81) (0.85) (0.86) (0.76) (1.22) (0)
Ucsv 095 082 080 | 08l 078 078 048 078 [ 077 080 08 078 | 091 8
(0.91) (0.82) (0.79) (0.80) (0.80) (0.79) (0.80) (0.79) (0.78) | (0.80) (0.85) (0.78) | (0.89) 3)
LASSO 083 075 073 076 074 075 075 073 075 080 082 073 098 11
(0.82) (0.74) (0.73) (0.78) (0.77) | (0.75) (0.74) (0.71) (0.76) (0.81) (0.84) (0.74) (1.04) (9)
adaLLASSO 084 076 074 077 075 075 076 075 076 080 085 072  0.96 1
(0.81) (0.75) (0.72) (0.77) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.84) (0.73) (0.96)  (11)
ElNet 083 075 073 076 075 074 075 074 076 081 082 073 098 11
(0.82) (0.74) (0.73) (0.78) (0.78) (0.76) (0.75) (0.71) (0.77)  (0.81) (0.85) (0.75) (1.05) (9)
adaElnet 084 075 073 077 075 075 075 074 076 080 081 073  0.96 11
(0.82) (0.74) (0.72) (0.76) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.83) (0.75) (0.97)  (11)
Ridge 085 073 072 075 074 075 075 073 074 077 078 070  0.89 13
(0.83) (0.72) (0.72) (0.77) (0.76) (0.76) (0.73) (0.71) (0.74) (0.77) (0.79) (0.71) (0.93)  (13)
BVAR 086 076 075 077 074 076 0.7 076 077 082 08 074 107 1
(0.87)  (0.73) (0.75) (0.79) (0.78) (0.78) (0.76) (0.76) (0.81) | (0.83) (0.85) (0.76) (1.09) (8)
Bagging 083 076 076 080 078 079 083 08 078 082 08 074 082 11
(0.84) (0.78) (0.79) (0.87) (0.86) (0.85) (0.83) (0.80) (0.80)  (0.84) (0.86) (0.78) & (0.88) (4)
CSR 085 077 076 079 077 079 079 077 079 083 08 076 113 1
(0.84) (0.76) (0.75) (0.79) (0.79) (0.79) | (0.76)  (0.74) (0.79) | (0.83) (0.84) (0.77) (L.11)  (3)
IMA 099 082 084 085 084 | 081 091 086 084 095 092 080 | 0.88 2
(0.99) (0.85) (0.89) (0.94) (0.96) (0.90) (0.91) (0.87) (0.93) (0.96) (0.96) (0.83) (0.91) (1)
Factor 087 078 078 079 | 078 078 080 081 082 084 | 084 | 078 117 4
(0.88) (0.80) (0.80) (0.82) (0.82) (0.80) (0.78) (0.80) (0.87) (0.87) (0.87) (0.82) (1.21) (0)
T. Factor 088 079 078 080 [ 077 079 079 080 080 | 082 08 @ 078 117 3
(0.87) (0.82) (0.81) (0.84) (0.83) (0.84) (0.80) (0.80) (0.84) (0.87) (0.86) (0.80) (1.23) (0)
Boosting 095 077 076 078 077 079 079 078 079 083 08 074 117 10
(0.96) (0.80) (0.81) (0.85) (0.84) (0.86) (0.84) (0.82) (0.85) (0.86) | (0.86) (0.75) (1.32) (1)
RF 084 073 071 074 071 0.2 072 071 072 0.76 0.77 0.68 0.77 13

(081) (0.72) (0.71) (0.75) (0.73) (0.73) (0.70) (0.68) (0.72) (0.75) (0.77) (0.67) (0.77)  (13)

Mean 083 075 073 076 074 074 075 074 075 077 078 071 095 12
(0.81) (0.74) (0.73) (0.76) (0.76) (0.75) (0.73) (0.71) (0.75) (0.76) (0.78) (0.70) (0.97)  (12)
T.Mean 084 074 073 075 074 074 075 073 074 078 079 071 095 12
(0.81) (0.74) (0.72) (0.76) (0.75) (0.74) (0.72) (0.70) (0.74) (0.77) (0.79) (0.70) (0.96)  (12)
Median 084 075 072 076 074 074 075 073 074 078 079 071 094 12

(0.81) (0.74) (0.72) (0.76) (0.76) (0.74) (0.73) (0.70) (0.74) (0.77) (0.79) (0.71) (0.97)  (12)

RF/OLS 081 073 072 075 074 075 075 074 074 078 079 071 094 13
0.79) (0.73) (0.72) (0.76) (0.76) (0.76) (0.73) (0.72) (0.75) (0.78) (0.81) (0.72) (0.97)  (13)
adaLASSO/RF 085 076 0.72 0.73 073 072 072 071 0.72 079 08 070 080 13

(0.82) (0.73) (0.72) (0.74) (0.74) (0.73) (0.71) (0.68) (0.72) (0.79) (0.82) (0.68) (0.82)  (13)

RMSE count 14 15 16 17 19 19 17 15 17 18 19 8 8
MAE count (12) (11) (12) (11) (10) (12) (13) (11) (10) (15) (16) (7) (9)
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Eigenvalue

FI1GURE 5. Eigenvalues of the matrix of contemporaneous regressor.
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FIGURE 6. Correlation of the Forecasts for the CPI from 1990 to 2015
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TABLE 9. Forecasting Errors for the CPI from 1990 to 2000

The table shows the root mean squared error (RMSE), and between parenthesis, the mean absolute
errors (MAE) for all models relative to the random walk (RW). The error measures were calculated
from 132 rolling windows covering the 1990-2000 period and 180 rolling windows covering the 2001-2015
period. Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the
models included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss
functions. The MCSs were constructed based on the maximum t-statistic. The last column in the table
reports in how many horizons the row model was included in the MCS for square (absolute) loss. The
last two rows in the table report how many models were included in the MCS for square and absolute

losses.
Consumer Price Index 1990-2000
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc.  fporeout
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) [(1:00)" (1.00) (1.00) (1.00) | (1.00) (4)
AR 0.84 0.82 0.88 0.82 0.78 0.79 0.79 0.80 0.87 0.89 0.95 0.85 1.24 10
(0.88) | (0.83) (0.92) (0.83) (0.81) | (0.84) (0.84) (0.80) (0.94) (0.98) (1.04) (0.94) (1.38) (6)
UCsv 0.86 0.84 0.87 0.87 0.85 0.85 0.86 0.85 0.86 0.89 0.94 0.88 1.00 8
(0.88) (0.85) (0.88) (0.87) (0.86) (0.86) (0.87) (0.84) (0.88) (0.91) (0.96) (0.89) (1.02) (11)
LASSO 0.83 0.82 0.88 0.83 0.79 0.78 0.80 0.81 0.88 0.92 0.97 0.85 1.24 9
(0.88)  (0.84) (0.92) (0.84) (0.83)  (0.84) (0.88) | (0.83) (0.96) (1.02) (1.08) (0.96) (1.41) (5)
adaLASSO 0.81 0.82 0.87 0.83 0.75 0.75 0.77 0.77 0.85 0.87 0.92 0.82 1.03 13
(0.84) (0.82) (0.86) (0.80) (0.73) (0.77) (0.81) (0.77) (0.90) (0.92) (1.00) (0.89) (1.08) (13)
ElNet 0.81 0.81 0.88 0.83 0.80 0.79 0.82 0.81 0.92 0.92 1.00 0.89 1.26 7
(0.86) (0.84) (0.92) (0.86) (0.86) | (0.85) (0.92) ' (0.83) (1.02) (1.02) (1.14) (1.02) (1.47) (4)
adaElnet 0.81 0.82 0.86 0.80 0.74 0.75 0.77 0.78 0.87 0.87 0.92 0.87 1.06 12
(0.85) (0.83) (0.86) (0.77) (0.73) (0.78) (0.81) (0.78) (0.92) (0.93) (1.00) (0.95) (1.13) (12)
Ridge 0.79  0.77 0.86 0.80 0.76 0.80 0.80 0.80 0.86 0.85 0.88 0.76 0.99 12
(0.83) (0.78) (0.90) (0.81) (0.78) (0.84) (0.85) (0.79) (0.90) (0.92) (0.96) (0.82) (I.15) (12)
BVAR 0.97 0.80 0.92 0.83 0.77 0.84 0.87 0.90 1.00 0.98 1.02 0.88 1.43 6
(1.00) [(0.77) (0.96) (0.88) (0.84) (0.93) (0.98) (0.95) (1.12) (1.10) (1.16) (1.01) (1.56) (1)
Bagging 0.85 0.86 1.02 0.92 0.90 0.91 0.90 0.86 0.91 0.91 0.93 0.79 1.02 8
(0.86) (0.87) (1.04) (0.95) (0.93) (0.95) (0.92)  (0.82) (0.94) (0.95) (0.99) (0.87) (L.15) (8)
CSR 0.83 0.85 0.89 0.81 0.77 0.76 0.76  0.76 0.85 0.88 0.91 0.81 1.11 10
(0.89) (0.89) (0.92) | (0.82) (0.79) @ (0.81) (0.82) (0.76) (0.91) (0.95) (0.97) (0.89) (1.25) (8)
JMA 0.94 1.01 1.17 0.99 1.03 1.01 1.06 1.03 1.21 1.13 1.13 0.93 1.00 1
(1.00) (1.02) (1.19) (1.01) (1.07) (L.05) (1.06) (1.01) (1.29) (1.19) (1.20) [(0:98) (1.08) (2)
Factor 0.87 0.85 0.98 0.90 0.89 0.86 0.84 0.90 1.02 0.97 1.04 0.98 1.51 1
(0.96) (0.92) (1.05) (0.97) (0.92) (0.90) [(0:88)" (0.91) (1.14) (1.09) (1.15) (1.14) (1.72) (1)
T. Factor 0.87 0.91 1.01 0.98 0.92 0.94 0.86 0.91 1.04 1.02 1.02 0.95 1.62 0
(0.93) (0.98) (1.13) (1.07) (1.02) (1.05) (0.94) (0.93) (1.16) (1.18) (1.15) (1.10) (1.91) (0)
Boosting 0.96 0.90 1.05 0.91 0.88 0.95 0.95 0.97 1.02 0.96 0.97 0.81 1.66 5
(1.09) (0.98) (1.16) (0.98) (0.97) (1.06) (1.06) (1.03) (1.12)  (1.06) (1.07) (0.89) (1.92) (3)
RF 0.79 0.78 0.85 0.77 0.73 0.76 0.76 0.77 0.82 0.82 0.85 0.72 0.87 13
(0.82) (0.78) (0.88) (0.77) (0.76) (0.79) (0.78) (0.75) (0.86) (0.86) (0.89) (0.76) (0.94) (12
Mean 0.80 0.79 0.85 0.79 0.76 0.77 0.77 0.77 0.84 0.84 0.87 0.78 1.02 13
(0.83) (0.81) (0.87) (0.80) (0.79) (0.81) (0.81) (0.76) (0.90) (0.91) (0.94) (0.85) (L.11) (12)
T.Mean 0.80 0.80 0.85 0.79 0.75 0.76 0.77 0.77 0.85 0.84 0.89 0.79 1.04 13
(0.84) (0.82) (0.87) (0.79) (0.77) (0.80) (0.81) (0.78) (0.91) (0.91) (0.97) (0.87) (L.15) (12)
Median 0.80 0.80 0.85 0.79 0.75 0.76 0.77 0.77 0.85 0.85 0.89 0.79 1.05 13
(0.84) (0.83) (0.83) (0.79) (0.78) (0.80) (0.82) (0.77) (0.91) (0.91) (0.97) (0.87) (1.16) (12)
RF/OLS 0.80 0.80 0.86 0.78 0.74 0.77 0.77 0.78 0.85 0.85 0.88 0.76 1.01 13
(0.82) (0.82) (0.89) (0.79) (0.76) (0.81) (0.82) (0.78) (0.90) (0.92) (0.96) (0.83) (1.14) (12)
adaLASSO/RF | 0.79 0.81 0.91 0.77 0.72 0.77 0.77 0.77 0.82 0.89 0.90 0.72 0.89 12
(0.84) (0.81) (0.94) (0.77) (0.73) (0.81) (0.81) (0.77) (0.86) (0.94) (0.99) (0.76) (0.95) (12
RMSE count 12 18 14 16 11 14 10 15 14 18 16 11 13
MAE count (12) (15) 9) (10) (3) (14) (13) (15) (15) (16) (14) (13) (13)
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TABLE 10. Forecasting Errors for the CPI from 2001 to 2015

The table shows the root mean squared error (RMSE), and between parenthesis, the mean absolute
errors (MAE) for all models relative to the random walk (RW). The error measures were calculated
from 132 rolling windows covering the 1990-2000 period and 180 rolling windows covering the 2001-2015
period. Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the
models included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss
functions. The MCSs were constructed based on the maximum t-statistic. The last column in the table
reports in how many horizons the row model was included in the MCS for square (absolute) loss. The
last two rows in the table report how many models were included in the MCS for square and absolute

losses.
Consumer Price Index 2001-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. fafSPoou
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)
AR 0.92 0.81 0.78 0.80 0.79 0.79 0.78 0.76 0.77 0.81 0.82 0.73 1.21 7
(0.87) (0.78) (0.74) (0.79) (0.80) (0.80) (0.75) (0.75) (0.76) (0.80) (0.79) (0.70) (1.17) (0)
UucCsv 0.98 0.81 0.79 0.80 0.77 077 077  0.76 0.76 0.79 0.81 0.76 0.89 9
(0.93) (0.81) (0.76) | (0.77) (0.78) (0.77) (0.77) (0.77) (0.75) | (0.76) (0.81) (0.73) | (0.85) (5)
LASSO 0.84 0.74  0.71 0.75 0.74  0.74 0.75 0.72 0.74 0.78 0.79 0.70 0.91 13
(0.79) (0.71) (0.67) (0.75) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.75) (0.65) (0.91) (12)
adaLASSO 0.84 0.75 0.72 0.76 0.75 0.75 0.76 0.74 0.75 0.79 0.81 0.70 0.93 13
(0.80) (0.72) (0.68) (0.76) (0.76) (0.73) (0.71) (0.69) (0.71) (0.75) (0.78) (0.67) (0.92)  (11)
ElNet 0.84 0.74 0.71 0.74 0.73 0.74 0.74 0.73 0.73 0.79 0.79 0.70 0.91 13
(0.80) (0.70) (0.67) (0.74) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.74) (0.64) (0.92)  (12)
adaElnet 0.85 0.74 0.72 0.76 0.75 0.75 0.75 0.74 0.74 0.79 0.80 0.70 0.93 12
(0.81) (0.71) (0.68) (0.76) (0.76) (0.73) (0.70) (0.68) (0.70) (0.74) (0.76) (0.67) (0.92) (11
Ridge 0.86 0.72 0.70 0.75 0.73 0.74 0.74  0.72 0.72 0.76 0.77  0.69 0.86 12
(0.83) (0.70) (0.67) (0.75) (0.75) (0.74) (0.69) (0.68) (0.69) (0.71) (0.73) (0.67) (0.86) (12)
BVAR 0.83 0.75 0.72 0.75 0.74  0.74 0.75 0.74 0.74 0.79 0.79 0.72 0.99 13
(0.81) (0.72) (0.68) (0.75) (0.75) (0.73) (0.69) (0.69) (0.70) (0.73) (0.74) (0.67) (0.93) (12)
Bagging 0.82 0.74  0.72 0.78 0.76 0.77 081 0.80 0.76 0.80 0.81 0.73 0.77 11
(0.84) (0.74) (0.71) (0.83) (0.84) (0.82) (0.80) (0.79) (0.76) (0.80) (0.82) (0.74) | (0.80) (4)
CSR 0.86 0.75 0.74 0.78 0.78 0.79 0.80 077  0.78 0.82 0.83 0.75 1.12 10
(0-82) (0.71) (0.69) (0.78) (0.79) (0.78) | (0.74) (0.73) (0.75) | (0.78) (0.80) (0.73) (1.07) (5)
JMA 1.00 0.78 0.79 0.83 0.80 0.77 0.89 0.83 0.79 0.91 0.88 0.77 0.84 5
(0.99) (0.78) (0.79) (0.92) (0.91) (0.84) (0.85) (0.82) (0.81) (0.88) (0.87) (0.78) = (0.85) (1)
Factor 0.87 0.77 0.75 0.77 0.76 0.77 0.79 0.80 0.79 0.81 0.81 0.74 1.10 9
(0.84) (0.76) (0.72) (0.77) (0.78) (0.76) (0.74) (0.76) (0.78) (0.79) | (0.77) (0.69) (1.04) (5)
T. Factor 0.88 0.76 0.74 0.76 0.74 0.76 0.78 0.78 0.76 0.78 0.80 0.74 1.05 9
(0.85)  (0.75) [(O71) (0.74) (0.75) (0.76) (0.75) (0.75) (0.74) ' (0.76) (0.76) (0.69) (1.00) (6)
Boosting 0.95 0.75 0.72 0.76 0.74 0.76 0.77 0.75 0.76 0.81 0.81 0.73 1.03 12
(0.91) | (0.72) (0.70) (0.79) (0.78) (0.79) (0.76) (0.75) (0.76)  (0.79) (0.79) (0.69) (1.13) (8)
RF 0.86 0.72 0.69 0.73 0.71 0.71 0.71 0.70 0.71 0.75 0.76 0.68 0.74 13
(0.81) (0.70) (0.66) (0.74) (0.71) (0.70) (0.67) (0.66) (0.67) (0.70) (0.72) (0.63) (0.72)  (13)
Mean 0.84 0.74  0.72 0.75 0.74  0.74 0.75 0.74  0.73 0.76 0.77  0.69 0.93 13
(0.80) (0.71) (0.69) (0.74) (0.75) (0.73) (0.70) (0.70) (0.70) (0.71) (0.72) (0.65) (0.92) (11)
T.Mean 0.85 0.73 0.71 0.75 0.73 0.74 0.74  0.73 0.73 0.77  0.78 0.70 0.92 13
(0.80) (0.71) (0.67) (0.74) (0.74) (0.72) (0.69) (0.68) (0.69) (0.72) (0.72) (0.64) (0.90) (12)
Median 0.85 0.73 0.71 0.75 0.73 0.74 0.74 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.80) (0.70) (0.67) (0.74) (0.75) (0.72) (0.69) (0.68) (0.69) (0.72) (0.73) (0.65) (0.90)  (12)
RF/OLS 0.81 0.72 0.71 0.75 0.74 0.75 0.75 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.78) (0.70) (0.67) (0.75) (0.76) (0.74) (0.70) (0.69) (0.70) (0.73) (0.76) (0.68) (0.91) (12)
adaLASSO/RF | 0.87 0.75 0.69 0.72 0.74 0.71 0.72 0.70 0.71 0.77 0.80 0.70 0.77 13
(0.81) (0.70) (0.66) (0.73) (0.74) (0.71) (0.68) (0.65) (0.67) (0.73) (0.75) (0.66) (0.77) (13)
RMSE count 11 17 15 19 18 18 18 17 19 19 20 19 17
MAE count (13) (15) (16) (16) (16) (16) (15) (11) (12) (16) (13) (12) (6)
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FIGURE 7. Variable importance
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APPENDIX A. VARIABLE DESCRIPTION

In this section, we present a description of the dataset used in this paper. Tables 13—20
describe the data and the transformations that were applied to each variable. Each table
considers one of the eight different sectors in which the variables are grouped. The column
tcode denotes the following data transformation for a series z: (1) no transformation; (2)
Azy; (3) 2A%4; (4) log(xy); (5) Alog(wy); (6) A%log(zy); and (7) A(xy/z—y — 1). The
FRED column gives mnemonics in FRED followed by a short description. The comparable

series in global insight is given in the column GS.

TABLE 13. Data Description: Output and Income

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)
Azy; (3) 2A%x; (4) log(wy); (5) Alog(ze); (6) A%log(xt); (7) A(z¢/w¢—1 — 1). The FRED column gives
mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

Group 1: Output and income

id tcode fred description gsi gsi:description
1 1 5 RPI Real Personal Income M_ 14386177 PI
2 2 5 WS875RX1 Real personal income ex transfer receipts M _145256755 PI less transfers
3 6 5 INDPRO IP Index M_116460980 IP: total
4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M_116460981 IP: products
5 8 5 IPFINAL IP: Final Products (Market Group) M_116461268 IP: final prod
6 9 5 IPCONGD  IP: Consumer Goods M_116460982 IP: cons gds
7 10 5 IPDCONGD IP: Durable Consumer Goods M_116460983 IP: cons dble
8§ 11 5 IPNCONGD IP: Nondurable Consumer Goods M_116460988 IP: cons nondble
9 12 5 IPBUSEQ IP: Business Equipment M_116460995 IP: bus eqpt
10 13 5 IPMAT IP: Materials M_116461002 IP: matls
11 14 5 IPDMAT IP: Durable Materials M_116461004 IP: dble matls
12 15 5 IPNMAT IP: Nondurable Materials M_116461008 IP: nondble matls
13 16 5 IPMANSICS IP: Manufacturing (SIC) M_116461013 IP: mfg
14 17 5 IPB51222s IP: Residential Utilities M_116461276 IP: res util
15 18 5 IPFUELS IP: Fuels M_116461275 1IP: fuels
16 19 1 NAPMPI ISM Manufacturing: Production Index M_110157212 NAPM prodn
17 20 2 CUMFNS Capacity Utilization: Manufacturing M_116461602 Cap uti
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TABLE 14. Data Description: Labor Market

The column tcode denotes the following data transformation for a series : (1) no transformation; (2)
Axzy; (3) 24272y (4) log(zy); (5) Alog(z¢); (6) A?log(zy); (7) A(z¢/xi—1 — 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

Group 2: Labor market

id  tcode fred description gsi gsi:description
1 21% 2 HWI Help-Wanted Index for United States Help wanted indx
2 22% 2 HWIURATIO  Ratio of Help Wanted/No. Unemployed M_110156531 Help wanted/unemp
3 23 5 CLF160V Civilian Labor Force M_110156467 Emp CPS total
4 24 5 CE160V Civilian Employment M_110156498 Emp CPS nonag
5 25 2 UNRATE Civilian Unemployment Rate M_110156541 U: all
6 26 2 UEMPMEAN  Average Duration of Unemployment (Weeks) M_110156528 U: mean duration
7T 27T 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M_110156527 U j 5 wks
8§ 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M_110156523 U 5-14 wks
9 29 5 UEMP150V Civilians Unemployed - 15 Weeks & Over M_110156524 U 15+ wks
10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M_110156525 U 15-26 wks
11 31 5 UEMP270V Civilians Unemployed for 27 Weeks and Over M_110156526 U 27+ wks
12 32*% 5 CLAIMSx Initial Claims M_15186204  UI claims
13 33 5 PAYEMS All Employees: Total nonfarm M_123109146 Emp: total
14 34 5 USGOOD All Employees: Goods-Producing Industries M_123109172 Emp: gds prod
15 35 5 CES1021000001 All Employees: Mining and Logging: Mining M_123109244 Emp: mining
16 36 5 USCONS All Employees: Construction M_123109331 Emp: const
17 37 5 MANEMP All Employees: Manufacturing M_123109542 Emp: mfg
18 38 5 DMANEMP All Employees: Durable goods M_123109573 Emp: dble gds
19 39 5 NDMANEMP  All Employees: Nondurable goods M_123110741 Emp: nondbles
20 40 5 SRVPRD All Employees: Service-Providing Industries M_123109193 Emp: services
21 41 5 USTPU All Employees: Trade, Transportation & Utilities M_123111543 Emp: TTU
22 42 5 USWTRADE  All Employees: Wholesale Trade M_123111563 Emp: wholesale
23 43 5 USTRADE All Employees: Retail Trade M_123111867 Emp: retail
24 44 5 USFIRE All Employees: Financial Activities M_123112777 Emp: FIRE
25 45 5 USGOVT All Employees: Government M_123114411 Emp: Govt
26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M_140687274 Avg hrs
27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M_123109554 Overtime: mfg
28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M_14386098  Avg hrs: mfg
29 49 1 NAPMEI ISM Manufacturing: Employment Index M_110157206 NAPM empl
30 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M_123109182 AHE: goods
31 128 6 CES2000000008 Avg Hourly Earnings : Construction M_123109341 AHE: const
32 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M_123109552 AHE: mfg
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TABLE 15. Data Description: Housing

The column tcode denotes the following data transformation for a series : (1) no transformation; (2)

Axzy; (3) 242745 (4) log(zy); (5) Alog(z¢); (6) A?log(zy); (7) A(z¢/xi—1 — 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

Group 3: Housing

Housing Starts: Total New Privately Owned
Housing Starts, Northeast

Housing Starts, Midwest

Housing Starts, South

Housing Starts, West

New Private Housing Permits (SAAR)

New Private Housing Permits, Northeast (SAAR)
New Private Housing Permits, Midwest (SAAR)
New Private Housing Permits, South (SAAR)

id tcode fred description
1 50 4 HOUST
2 51 4 HOUSTNE
3 52 4 HOUSTMW
4 53 4 HOUSTS
5 54 4 HOUSTW
6 55 4 PERMIT
7 56 4 PERMITNE
8§ 57 4 PERMITMW
9 58 4 PERMITS
10 539 4 PERMITW

New Private Housing Permits, West (SAAR)

gsi

M_110155536
M_110155538
M_110155537
M_110155543
M_110155544
M_110155532
M_110155531
M_110155530
M_110155533
M_110155534

gsi:description
Starts:
Starts:
Starts:
Starts: South
Starts: West
BP: total
BP: NE

BP: MW
BP: South
BP: West

nonfarm
NE
MW

TABLE 16. Data Description: Consumption, Orders and Inventories

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

Azy; (3) 2A%; (4) log(zy); (5) Alog(ze); (6) A%log(zy); (7) A(z¢/w¢—1 — 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

Group 4: Consumption, orders, and inventories

id tcode fred description gsi gsi:description
1 3 5 DPCERA3MO086SBEA Real personal consumption expenditures M_123008274 Real Consumption
2 4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales M_110156998 M&T sales
3 5* 5 RETAILx Retail and Food Services Sales M_130439509 Retail sales
4 60 1 NAPM ISM : PMI Composite Index M_110157208 PMI
5 61 1 NAPMNOI ISM : New Orders Index M_110157210 NAPM new ordrs
6 62 1 NAPMSDI ISM : Supplier Deliveries Index M_110157205 NAPM vendor del
7 63 1 NAPMII ISM : Inventories Index M_110157211 NAPM Invent
8 64 5 ACOGNO New Orders for Consumer Goods M_14385863  Orders: cons gds
9 65* 5 AMDMNOx New Orders for Durable Goods M_14386110  Orders: dble gds
10 66* 5 ANDENOx New Orders for Nondefense Capital Goods M_178554409 Orders: cap gds
11 67* 5 AMDMUOx Unfilled Orders for Durable Goods M_14385946  Unf orders: dble
12 68*% 5 BUSINVx Total Business Inventories M_15192014 M&T invent
13 69* 2 ISRATIOx Total Business: Inventories to Sales Ratio M_15191529 M&T invent/sales
14 130* 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect
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TABLE 17. Data Description: Money and Credit

The column tcode denotes the following data transformation for a series : (1) no transformation; (2)
Azy; (3) 2A%2; (4) log(wy); (5) Alog(xy); (6) A%log(xy); (7) A(xy/wy—1 —1). The FRED column gives
mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

Group 5: Money and credit

id  tcode fred description gsi gsi:description
1 7 6 M1SL M1 Money Stock M_110154984 M1
2 71 6 M2SL M2 Money Stock M_110154985 M2
3 72 5 M2REAL Real M2 Money Stock M_110154985 M2 (real)
4 73 6 AMBSL St. Louis Adjusted Monetary Base M_110154995 MB
5 7 6 TOTRESNS Total Reserves of Depository Institutions M_110155011 Reserves tot
6 7 7 NONBORRES Reserves Of Depository Institutions M_110155009 Reserves nonbor
7 76 6 BUSLOANS Commercial and Industrial Loans BUSLOANS  C&I loan plus
8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans
9 78 6 NONREVSL Total Nonrevolving Credit M_110154564 Cons credit
10 79% 2 CONSPI Nonrevolving consumer credit to Personal Income ~ M_110154569 Inst cred/PI
11 131 6 MZMSL MZM Money Stock N.A. N.A.
12 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.
13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.
14 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.
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TABLE 18. Data Description: Interest and Exchange Rates

The column tcode denotes the following data transformation for a series : (1) no transformation; (2)
Azy; (3) 2A%2; (4) log(wy); (5) Alog(xy); (6) A%log(xy); (7) A(xy/wy—1 —1). The FRED column gives
mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

Group 6: Interest and exchange rates

id  tcode fred description gsi gsi:description
1 84 2 FEDFUNDS Effective Federal Funds Rate M_110155157 Fed Funds
2 8% 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper
3 8 2 TB3MS 3-Month Treasury Bill: M_110155165 3 mo T-bill
4 87 2 TB6MS 6-Month Treasury Bill: M_110155166 6 mo T-bill
5 8 2 GS1 1-Year Treasury Rate M_110155168 1 yr T-bond
6 8 2 GS5 5-Year Treasury Rate M_110155174 5 yr T-bond
7 9 2 GS10 10-Year Treasury Rate M_110155169 10 yr T-bond
8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond
9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond
10 93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
11 94 1 TB3SMFFM  3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
12 95 1 TB6SMFFM  6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread
14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 y1-FF spread
16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg
19 102 *5  EXSZUSx Switzerland / U.S. Foreign Exchange Rate M_110154768 Ex rate: Switz
20 103 *5 EXJPUSx Japan / U.S. Foreign Exchange Rate M_110154755 Ex rate: Japan
21 104 *5 EXUSUKx U.S. / UK. Foreign Exchange Rate M_110154772 Ex rate: UK
22 105 *5  EXCAUSx Canada / U.S. Foreign Exchange Rate M_110154744 Ex rate: Canada
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TABLE 19. Data Description: Prices

The column tcode denotes the following data transformation for a series : (1) no transformation; (2)

Axzy; (3) 242745 (4) log(zy); (5) Alog(z¢); (6) A?log(zy); (7) A(z¢/xi—1 — 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

id

tcode fred

Group 7: Prices

description gsi gsi:description
1 106 6 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds
2 107 6 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds
3 108 6 WPSID61 PPI: Intermediate Materials M_110157527 PPI: int matls
4 109 6 WPSID62 PPI: Crude Materials M_110157500 PPI: crude matls
5 110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing M_110157273 Spot market price
6 111 6 PPICMM PPI: Metals and metal products M_110157335 PPI: nonferrous
7T 112 1 NAPMPRI ISM Manufacturing: Prices Index M_110157204 NAPM com price
8 113 6 CPIAUCSL CPI : All Items M_110157323 CPI-U: all
9 114 6 CPIAPPSL CPI : Apparel M_110157299 CPI-U: apparel
10 115 6 CPITRNSL CPI : Transportation M_110157302 CPI-U: transp
11 116 6 CPIMEDSL CPI : Medical Care M_110157304 CPI-U: medical
12 117 6 CUSRO000SAC CPI : Commodities M_110157314 CPI-U: comm.
13 118 6 CUURO0000SAD CPI : Durables M_110157315 CPI-U: dbles
14 119 6 CUSRO0000SAS CPI : Services M_110157325 CPI-U: services
15 120 6 CPIULFSL CPI : All Ttems Less Food M 110157328 CPI-U: ex food
16 121 6 CUURO000SAOL2 CPI : All items less shelter M_110157329 CPI-U: ex shelter
17 122 6 CUSRO0000SAOLS CPI : All items less medical care M_110157330 CPI-U: ex med
18 123 6 PCEPI Personal Cons. Expend.: Chain Index  gmdc PCE defl
19 124 6 DDURRG3MO086SBEA  Personal Cons. Exp: Durable goods gmdced PCE defl: dlbes
20 125 6 DNDGRG3MO86SBEA  Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble
21 126 6 DSERRG3MO0O86SBEA  Personal Cons. Exp: Services gmdcs PCE defl: service

TABLE 20. Data Description: Stock Market

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

Azy; (3) 2A%x; (4) log(wy); (5) Alog(zy); (6) A%log(xy); (7) A(x¢/w¢—1 — 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.

Group 8: Stock Market
description gsi

id tcode fred gsi:description

1 80* 5 S&P 500 S&P’s Common Stock Price Index: Composite M_110155044 S&P 500

2 81* 5 S&P: indust  S&P’s Common Stock Price Index: Industrials M_110155047 S&P: indust
3 82% 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield
4 83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio
5 135% 1 VXOCLSx VXO
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APPENDIX B. MODELS

For all models, with the exception of the RW and UCSV specifications, we include a

dummy for the November 2008, when a huge deflation was observed.

B.1. Benchmark Models. The first benchmark is the RW model, where for h = 1,...,12,
the forecasts are computed as follows:

/7%t+h\t = Tt- (3>

For the accumulated twelve-month forecast, we consider the following equation:

/ﬁt+1:t+12|t = Tt—11:t» (4)

where m;_11.; is the accumulated inflation over the previous twelve months.
The second benchmark is the autoregressive (AR) model of order p, where p is deter-
mined by the Bayesian information criterion (BIC) and the parameters are estimated by

OLS. The forecast equation is

Ttnlt = Gop + OLaT 4 oo+ OppTe—pi1. (5)

There is a different model for each horizon. The accumulated forecasts are computed by
aggregating the individual forecasts.

Finally, the third benchmark is the UCSV model, which is described as follows:
™ =T + eht/zet,
Ty =Ti—1 + Uy, (6)
he =hs_1 + vy,

where {¢;} is a sequence of independent and normally distributed random variables with
zero mean and unit variance and ¢; ~ N(0, 1), u; and v, are also normal with zero mean
and variance given by inverse-gamma priors. 7 ~ N(0,V;) and h; ~ N(0,V}), where
V. =V}, = 0.12. The model is estimated by Markov chain Monte Carlo (MCMC) methods.
The h-steps-ahead forecast is computed as 7, = Ty

For accumulated forecasts, the UCSV is estimated with the twelve-month inflation as

the dependent variable.

B.2. Shrinkage. In this paper, we estimate several shrinkage estimators for linear models
where Tj,(x;) = 3}, x; and

T—h

Bh = arg mﬁin Z (Teqn — ,Blwt)Q + A ZP(@'S wi, )| (7)
t=1 =1
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where p(f;; w;, @) is a penalty function that depends on the penalty parameter A and on a

weight w; > 0. We consider different choices for the penalty functions as described below.

B.2.1. Ridge Regression (RR):. RR shrinkage was proposed by Hoerl & Kennard (19700,a)

and consists of the following penalty function:
A p(Biwia) =AY B (8)
i=1 i=1

RR has the advantage of having an analytical solution that is easy to compute and
shrinks the irrelevant variables to zero. However, given the geometry of the penalty, the
coefficients rarely reach exactly zero for any size of A. Therefore, RR is not an sparsity-
inducing method.

One interesting fact about RR is its relation to principal component (factor) models.
Let X be the centered T'xn predictor matrix and consider its singular value decomposition
X =USV’ with S being a diagonal matrix with diagonal elements s;, i = 1,...,n.

The RR estimates of inflation are given by

Tridge = XIB

_ : s
idge = X (X'X + M) ' X'y = Udiag <32 T /\> Uy,

7

whereas for the factor model with k factors are given by

mpc = XpcBpe = Udiag(1,...,1,0,...,0)U"y.
—— ——
kones  n—kzeroes
However, this parallel to factor models does not hold exactly in our implementation
as the variable set for the RR is larger that the one for the principal component factor
construction as it includes four lags of each variable, autoregressive terms and the factors
as well. Nevertheless, the comparison is useful to understand the potential differences in

performance between RR and factor alternatives.

B.2.2. Least Absolute Shrinkage and Selection Operator (LASSO):. LASSO was originally
proposed by Tibshirani (1996). LASSO is similar to RR but penalizes the ¢; norm of the

coefficients as follows: . n
A p(Biw0) = A |81 (9)
i=1 i=1

LASSO shrinks the irrelevant variables to zero and has some good properties both in
variable selection and goodness of fit. In order to achieve consistent variable selection,
LASSO requires the irrepresentable condition? (IRC) to be satisfied (Zhao & Yu 2006).

9The irrepresentable condition imposes some restrictions on the correlation structure between the relevant
and the irrelevant variables. In other words, the correlation between the two groups is bounded and must
be small.
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However, even if the IRC is not satisfied, LASSO still has the variable screening property,
i.e., LASSO selects the relevant variables with high probability, but it may also select

some extra variables.

B.2.3. Adaptive LASSO (adaLASSO):. adalLASSO was proposed by Zou (2006), who
showed that the inclusion of some additional information regarding the importance of
each variable could considerably improve the results. The adaLASSO does not need the
IRC to have variable selection consistency and also has oracle properties, i.e., it not only
selects the correct set of variables with high probability, but the coefficient distribution
of these variables is also the same as the OLS estimation using only the correct set of
variables. adalLASSO uses the same penalty as LASSO with the inclusion of a weighting
parameter that comes from a first-step model that can be LASSO or even OLS:

A T p(Biwia) =X wilBil, (10)
=1 =1

where w; = |3f|7! and S} are the coefficients from the first-step model. Finally, LASSO
has some good properties for high-dimensional data. LASSO can handle many more

variables than observations and works well in nonGaussian environments and under het-
eroskedasticity (Medeiros & Mendes 2016).

B.2.4. FElastic Net (ElNet). Elastic net (EINet) is a generalization that includes LASSO
and RR as special cases. ElNet is a convex combination of the ¢ and the 5 norms (Zou &
Hastie 2005). ElNet also does regularization and selects the most relevant variables. Since
its penalty is between that of LASSO and RR, EINet normally selects more variables than
LASSO, at least for the same value of A\. The ElNet penalty is defined as follows:

A p(Biwina) = ard B+ (L—a)A Y |B; (11)
=1 =1 i=1

where « € [0, 1]. We also consider an adaptive version of ElNet (adaEINet). This version
works in the same way as the adaptive LASSO, i.e., we estimate a first-step model and

use it to calculate the weights w;.

B.3. Factor Models. Factor models using principal components are very popular ap-
proaches to avoid the curse of dimensionality when the number of predictions is potentially
large. The idea is to extract common components from all variables, thus reducing the
model dimension.

In the present paper, factors are computed as principal components of a large set of
variables z; such that F;, = Az;, where A is a rotation matrix and F'; is the vector

of the principal components. Consider equation (1). In this case, x; is given by m_;,
46



J=0,1,2,3 plus f,_;, 7 =0,1,2,3, where f, is the a vector with the first four principal
components of z;. The assumptions and the theory behind factor models and when can
we treat factors as observed variables can be found in Bai & Ng (2002, 2006, 2008).

B.3.1. Target Factors. To improve the forecasting performance of factor models, Bai &
Ng (2008) proposed targeting the predictors. The idea is that if many variables in z,
are irrelevant predictors of 7., factor analysis using all variables may result in noisy
factors with poor forecasting ability. The target factors are regular factor models with a
pretesting procedure to select only relevant variables to be included in the factor analysis.
Let zj4, 1 =1
be used as controls in the pretesting step. We follow Bai & Ng (2008) and use w; as AR

,...,q be the candidate variables and w; a set of fixed regressors that will

terms of m;. The procedure is described as follows.

(1) For ¢ = 1,...,q, regress m, on w; and z;; and compute the ¢ statistics for the
coefficient corresponding to z; ;.

(2) Sort all ¢ statistics calculated in step 1 in descending order.

(3) Choose a significance level a and select all variables that are significant using the
computed ¢ statistics.

(4) Let z¢(a) be the selected variables from steps 1-3. Estimate the factors F'; from
z¢(«) by principal components.

(5) Regress 7, on w; and Sfi—jy 7 =0,1,2,3, where f, C F;. The number of factors
in f, is selected using the BIC. Bai & Ng (2008) also selected the number of lagged
factors using the BIC.

The same procedure was used by Medeiros & Vasconcelos (2016). The authors showed
that in most cases, target factors slightly reduce the forecasting errors compared to factor

models without targeting.

B.3.2. Factor Boosting. The optimal selection of factors for predictive regressions is an
open problem in the literature. Even if the factor structure is clear in the data, it is not
obvious that only the most relevant factors should be included in the predictive regression.
We adopt the boosting algorithm as proposed by Bai & Ng (2008) to select the factors
and the number of lags that must be considered in the predictive regression for inflation.
Define z; € RY, the set of all n factors computed from the original n variables plus four
lags of each factor. Therefore, ¢ = 5n.

The algorithm is defined as follows:
(1) Let ®;¢ = 7 for each t, where 7 = %2221 .
(2) Form=1,...,M:

(a) Compute Uy = 1 — Py_pm—1.
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(b) For each candidate variable i = 1, ..., ¢, regress the current residual on z;; to
obtain Ez and compute €;; = uy — Ziﬁi. Calculate SSR; = €e;.
(c) Select ¥, as the index of the variable which delivers the smallest SSR and
define ggt,m = zi;mt/b\i;n,
(d) Update @t,m = EI\Dum_l + V¢ m, where v is the step length. We set v = 0.2.
(3) Stop the algorithm after the Mth iteration or when the BIC starts to increase.

B.4. Ensemble Methods. Ensemble forecasts are constructed from a (weighted) av-
erage of the predictions of an ensemble of methods. In this section, we describe the

techniques considered in this paper.

B.4.1. Bagging. The term “bagging” comes from bootstrap aggregation, which was pro-
posed by Breiman (1996). The idea is to combine forecasts from several unstable models.
Normally, there is much more to gain from combinations of models if they are very differ-
ent. The first source of instability is generated by re-estimating the model using bootstrap
samples, and the second source comes from a pretesting step prior to the estimation, which
for each bootstrap sample selects a subset of variables based on their statistical signifi-

cance. The bagging steps are as follows:

(1) For each bootstrap sample b, run a regression with all candidate variables and
select those with |t| > ¢, where ¢ is a pre-defined critical value.

(2) Estimate a new regression only with the variables selected in the previous step.

(3) The coefficients from the second regression are finally used to compute the forecasts
on the actual sample.

(4) Repeat the first three steps for B bootstrap samples and compute the final forecast

as the average of the B forecasts.

We used B = 100. Note that in our case, the number of observations may be smaller
than the number of variables, which makes the regression in the first step unfeasible. We
solve this issue by introducing a new source of instability in the pretesting step. For each
bootstrap sample we randomly divide all variables in groups and run the pretesting step
for each one of the groups.

B.4.2. Complete Subset Regressions. CSR was developed by Elliott et al. (2013, 2015).
The motivation for developing CSR was that selecting the optimal subset of x; to predict
m1n by testing all possible combinations of regressors is computationally very demanding,
and in most cases, even unfeasible. Supposing that we have n candidate variables, the
CSR selects a number ¢ < n and computes all combinations of regressions using only ¢
variables. The forecast of the model will be the average forecast of all regressions in the

subset.
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CSR deals well with a small number of candidate variables. However, for large sets, the
number of regressions to be estimated increases very fast. For example, with n = 25 and
q = 4, we need to estimate 12,650 regressions. As the number of candidate variables is
much larger, we adopt a pretesting procedure similar to that used with the target factors.
We start fitting a linear regression of 7, on each of the candidate variables (including
lags) and save the t-statistics of each variable’. The t-statistics are ranked by absolute
value, and we select the n variables that are more relevant in the ranking. The CSR

forecast is calculated on these variables. We used n = 25 and ¢ = 4.

B.4.3. Jackknife Model Averaging. JMA is a different way to combine forecasts from sev-
eral small models. Instead of using the naive average of the forecasts, JMA uses leave-
one-out cross-validation to estimate optimal weights. The procedure we followed is that
of Hansen & Racine (2012) with some adjustments for time series as discussed in Zhang
et al. (2013).

Suppose we have M candidate models that we want to average from and write the

forecast of each model as %\ET})L, m=1,..., M. Set the final forecast as

M
= _ ~(m)
t+h = Wy ps
m=1

where 0 < w,, <1forallme {1,...,M} and ¥ w,, = 1.
The JMA procedure is as follows:

(1) For each observation of (&, myyp):
(a) Estimate all the candidate models leaving the selected observation out of the
estimation. Since we are in a time series framework with lags in the model, we
also removed four observations before and four observations after (a;, 7).
(b) Compute the forecasts from each model for the observations that were re-
moved in the previous step.
(2) Choose the weights that minimize the cross-validation errors subject to the con-

straints previously described.

The minimization problem above is quadratic and has the restriction that w must be
positive and sum to 1. The problem does not have a closed solution but can be easily
solved using the quadprog package (Berwin et al. 2013) in R. Given our set of candidate
variables, each candidate model in the JMA has four autoregressive lags of the inflation

and four lags of one candidate variable.

10We did not use a fixed set of controls, wy, in the pretesting procedure like we did for the target factors.
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B.5. Regression Trees and Random Forests. The RF methodology was initially pro-
posed by Breiman (2001) as a solution to reducing the variance of regression trees and
is based on bootstrap aggregation (bagging) of randomly constructed regression trees. In
turn, regression trees are flexible nonparametric predictive models that recursively par-
tition the set of explanatory variables, X, into subsets, each modeled using regression
methods; see Breiman (1996).

To understand how a regression tree works, an example from Hastie et al. (2001) is
useful. Consider a regression problem in which X; and X, are explanatory variables, each
taking values in some given interval, and Y is the dependent variable. We first split the
space into two regions, at X; = s;, and then, the region to the left (right) of X; = s is
split at Xy = s9 (X7 = s3). Finally, the region to the right of X} = s3 is split at Xy = sy4.
As illustrated in the right plot of Figure 8, the end result is a partitioning of X into
five regions: R,,, m = 1,...,5. In each region R,,, we assume that the model predicts
Y with a constant ¢,,, which could be estimated, for example, as the sample average of
realizations of Y that “fall” within region R,,. A key advantage of this recursive binary
partition is that it can be represented as a single tree, as illustrated in the left plot of

Figure 8. Each region corresponds to a terminal node of the tree.

Ficure 8. Example of a regression tree. Reproduction of part of Figure
9.2 in Hastie et al. (2001).

Now we turn to the question as to how to choose splitting variables and split points, i.e.,
how to grow a tree, when there are p explanatory variables. Let x; = (14, Ty, ..., Tpy),

fort =1,...,T, where z;, is the realization of variable X; in period ¢.
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We proceed backwards. Suppose that after choosing the splitting variables and split
points, we reach M regions. If we adopt the sum of squared errors as our minimization
criterion, the prediction of Y at T, ¢,,, is simply the average of previous realizations

such that x; belongs to R,,. Algebraically, for m=1,..., M,
T

T
I(x; € R,
Cm = arg minZI(xt € Ry — cm)? = thTl (¢ )?/t7
t=1 Zi:l I(xt € Rm)

where I is the indicator function.

(12)

The idea is to use the sum of squared errors to inform how to grow the regression tree.
To begin, consider a splitting variable j and a split point s to partition X into two regions,
namely, R;(j,s) = {X|X; < s} and Ry(j,s) = {X]|X; > s}. Then, seek the pair (j,s)
that solves

T

T
min |\ min Y Iz, € Ry(j, )y — 1) +min D Iz, € Ro(j, 5)) (e — c2)

? t=1 t=1
Once the best split is found, we proceed iteratively, repeating this process on each of the
resulting regions.

A natural question arises: when should we stop this process? A very large tree might
overfit the data, which would be highly unstable. However, a tree that is too small might
not capture a complex nonlinear relation between variables in the data. One possibility
to address this trade-off is the cost-complexity pruning method described in Hastie et al
(2009). Instead, we follow the RF method, which applies the essential idea of bagging,
i.e., RF reduces the variance by averaging many noisy and unbiased models to (very large)
regression trees. The drawback is the loss of interpretability.

An RF is a collection of regression trees, each specified in a bootstrapped subsample
of the original data. Suppose there are B bootstrapped subsamples. For each subsample,
obtain a prediction for Y by applying a modified version of the aforementioned splitting
iterative process until a prespecified minimum number of observations, say five, is reached
in any resulting region. In particular, the modification is to select ¢ variables at random
from the p explanatory variables at each step of the process. Finally, simply average the
predictions of Y across the B bootstrapped subsamples. Since we are dealing with time
series, bootstrapped samples are calculated using block bootstrapping.

The main advantages of the RF method are twofold: RF can handle both a very large

number of explanatory variables and complex nonlinear relationships between variables.

B.6. Hybrid Linear-Random Forests Models. RF/OLS and adaLASSO/RF deserve

some special attention because these are adaptations made specifically to answer how
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important the variable selection is and the nonlinearity in forecasting the US inflation.
RF/OLS is estimated using the following steps:

(1) For each bootstrap sample b:
(a) Grow a single tree with k& nodes (we used k& = 20) and save the N < k split
variables,
(b) Run an OLS on the selected splitting variables,
(¢) Compute the forecast g7, ,.
(2) The final forecast will be g4, = B~' S0, ., where B is the number of bootstrap

samples.

The main objective of the RF/OLS is to check the performance of a linear model
using variables selected from the RV. If the results are very close to the full RF, we
understand that nonlinearity is not an issue, and the RF is superior solely because of
variable selection. However, if we see some improvement compared to other linear models,
especially bagging'!, but if RF/OLS is still less accurate than RF, we have evidence that
both nonlinearity and variables selection play an important role.

The second adapted model is LASSO/RF, where we use the adaptive LASSO for vari-
able selection and then estimate a fully grown RF with the variables selected by adaptive
LASSO. If LASSO/RF performs similarly to RF, we understand that the variable selec-
tion in RF is irrelevant, and the only thing that matters is the nonlinearity. LASSO/RF
and RF /OLS together create an ”if and only if” situation where we test the importance of
variable selection and nonlinearity from both sides. Our results point to the middle case
where nonlinearity and variable selection are both important. The two adapted models
perform very well compared to other linear specifications, but RF is more accurate than
both. In other words, the good performance of RF is driven by both variable selection

and nonlinearity:.

HBagging and RF are bootstrap-based models, the first of which is linear and the second is nonlinear.
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APPENDIX C. ADDITIONAL RESULTS

C.1. Variable Selection: Word Clouds. This Appendix presents the variable selection
for several models as word clouds. In the present context, a word cloud is an image
composed of the names of variables selected by a specific model across the estimation
windows in which the size of each word indicates its frequency or importance. The names
displayed in the clouds are as defined in the third column of Tables 13-20. These names
represent FRED mnemonics. The clouds also indicate the degree of sparsity of each
model. For instance, the smaller the cloud is, the more sparse the model is.

Figures 9 and 10 display the word clouds for the linear model estimated with the
adalLASSO method for the first and second subsamples, respectively. In each figure,
panel (a) shows the cloud for one-month-ahead models (h = 1), panel (b) presents the
results for the three-month horizon (h = 3), and panels (c) and (d) consider the cases
for h = 6 and h = 12, respectively. A number of findings emerge from the word clouds.
First, as expected, the adalLASSO method delivers very sparse methods, and this did not
change much according to the subsample considered. Second, the models across different
horizons, as shown before, are quite different. For example, in the first subsample and for
h =1, the three variables that stand out from the cloud are CUSRO000SAOL5 (CPI: all
items less medical care), WPSFD49207 (PPI: finished goods), and DSERRG3MO086SBEA
(PCE: Services). However, for h = 12, the most important variables are AMDMUOx
(unfilled orders for durable goods) and HOUSTMW (Housing starts, Midwest). Finally,
the pool of selected variables also changes from the first to the second sample, specially
for h = 1. In this case, oil prices turn out to be one of the most relevant variables.

Figures 11 and 12 shows the word clouds for the RF model. From the pictures it is
clear that the number of important variables are much higher. As in the adalLASSO case,

the variable composition changes from the first to the second subsample.

C.2. Additional Results: Personal Consumption Expenditure (PCE). In this
section, we report forecasting results for PCE. The main message is similar to the one
described in the main text: RF models outperform traditional benchmarks as well as
other linear ML methods.

In Tables 21-23, we report for each model a number of different summary statistics
across all the forecasting horizons, including the accumulated twelve-month horizon for
the full out-of-sample period (1990-2015) as well as for the two subsamples considered,
namely, 1990-2000 and 2001-2015. Columns (1), (2) and (3) report the RMSE, the MAE
and the MAD, respectively. In columns (4), (5) and (6) we report the number of times
(across horizons) each model achieved the lowest RMSE, MAE, and MAD, respectively.

Columns (7)—(10) present, for square and absolute losses, the average p-values based either
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FIGURE 9. Word clouds for the adal,LASSO method (1990-2000).
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on the range or the tynax statistics as described in Hansen et al. (2011). Columns (11)
and (12) show the average p-values of the SPA test proposed by Hansen (2005). Finally,
columns (13) and (14) display the p-value of the multi-horizon test for superior predictive
ability proposed by Quaedvlieg (2017). The superiority of the RF models is clear from
the tables.

Tables 24-26 show the RMSE and, in parenthesis, the MAE for all models relative to
the RW. The error measures were calculated from 132 rolling windows covering the 1990-
2015 period and 180 rolling windows covering the 2001-2015 period. Values in bold show
the most accurate model in each horizon. Cells in gray (blue) show the models included

in the 50% MCS using the squared error (absolute error) as loss function. The MCSs
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F1GURE 10. Word clouds for the adalLASSO method (2001-2015).
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were constructed based on the maximum ¢ statistic. The last column in the table reports
in how many horizons the row model was included in the MCS for square (absolute) loss.
The last two rows in the table report how many models were included in the MCS for

square and absolute losses. Again, the performance of the RF model is remarkable.
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F1GURE 11. Word clouds for the Random Forest model (1990-2000).
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F1curE 12. Word clouds for the Random Forest model (2001—2015).
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TABLE 24. Forecasting Errors for the PCE from 1990 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors
(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132
rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.
Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models
included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.
The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in
how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Personal Consumer Expenditure 1990-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSEcomnt

(MAE count)
RW .00 100 100 100 1.00 100 100 100 100 100 100 1.00  1.00 0
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)
AR 089 |08 082 [ 084 08 080 | 079 078 [ 082 084 087 080 | 096 7
(0.87) | (0.81) | (0.79) (0.83) (0.82) (0.81) (0.79) (0.75) (0.82) (0.84) (0.89) (0.82) (0.91) (3)
Ucsv 094 08 084 086 08 083 | 083 082 [ 083 084 086 083 [ 085 5
(0.92) (0.86) (0.82) (0.85) (0.84) (0.83) (0.84) (0.82) (0.84) (0.84) (0.90) (0.83) (0.90) (0)
LASSO 083 078 075 079 078 078 078 077 | 081 082 | 08 076 | 0.79 9
(0.80) (0.77) (0.73) (0.80) (0.81) (0.79) (0.78) (0.73) (0.80) (0.81) (0.86) (0.77) | (0.77) (1)
adaLASSO 084 079 077 080 079 078 078 079 | 082 082 | 08 076 | 083 9
(0.82) (0.78) (0.74) (0.80) (0.79) (0.77) (0.77) (0.74) (0.80) (0.80) (0.85) (0.77) (0.82) (6)
EINet 083 078 075 079 078 078 077 077 | 08 082 | 08 076 | 0.79 9
(0.80) (0.77) (0.73) (0.81) (0.81) (0.80) (0.78) (0.74) (0.81) (0.81) (0.87) (0.78) | (0.78) (6)
adaElnet 084 079 076 080 079 078 | 078 078 [ 082 082 084 076 | 0.83 9
(0.83)  (0.79) (0.74) (0.80) (0.80) (0.78) (0.77) (0.74) (0.80) (0.81) (0.86) (0.77) (0.81) (5)
Ridge 085 076 076 079 076 077 076 075 079 078 081 074 077 13
(0.83) | (0.75) (0.73) (0.78) (0.79) (0.78) (0.75) (0.72) (0.79) (0.78) (0.83) | (0.75) (0.77) (9)
BVAR 090 08 079 | 081 079 080 081 082 086 087 090 083 | 0.90 5
(0.89) | (0.78) | (0.79) (0.83) (0.83) (0.84) (0.83) (0.82) (0.89) (0.89) (0.94) (0.87) (0.89) (3)
Bagging 087 078 078 083 082 | 081 | 082 080 | 083 081 084 | 076 0.6 8
(0.86) | (0.76) (0.76) (0.86) (0.90) (0.86) (0.83) (0.80) (0.86) (0.83) (0.88)  (0.78) (0.82) (4)
CSR 085 078 077 080 078 079 079 078 082 084 087 081 090 1
(0.82) (0.78) (0.74) (0.80) (0.79) (0.78) (0.76) (0.73) (0.80) (0.82) (0.87) (0.81) (0.87) (8)
IMA 095 088 084 089 087 084 088 085 092 [ 087 | 091 082 [ 0.79 2
(0.94) (0.91) (0.85) (0.97) (0.97) (0.91) (0.91) (0.86) (0.97) (0.92) (0.95) (0.88) | (0.83) (1)
Factor 089 084 083 084 083 084 083 083 087 087 08 085 095 0
(0.87) (0.84) (0.83) (0.84) (0.85) (0.85) (0.84) (0.81) (0.89) (0.88) (0.90) (0.88) (0.92) (0)
T. Factor 090 083 081 [ 08l 08 081 080 080 083 | 084 | 08 082 092 2
(0.91) (0.85) (0.82) | (0.80) (0.83) (0.83) (0.81) (0.77) (0.84) (0.86) (0.87) (0.84) (0.90) 1)
Boosting 099 [ 083 082 084 082 084 084 084 | 087 08 08 081 | 091 7
(1.00) | (0.83)  (0.83) (0.89) (0.89) (0.89) (0.83) (0.85) (0.91) (0.8%) (0.92) (0.83) (1.02) (1)
RF 086 0.76 0.74 0.76 0.73 0.73 0.72 072 0.75 0.75 0.78 0.71 0.67 13
(0.82) (0.74) (0.73) (0.77) (0.77) (0.75) (0.72) (0.68) (0.73) (0.74) (0.78) (0.70) (0.63)  (13)
Mean 084 077 076 078 077 077 076 075 078 078 080 0.75 080 13
(0.81) (0.77) (0.73) (0.78) (0.78) (0.77) (0.76) | (0.71) (0.77)  (0.77) (0.81) | (0.75) (0.77)  (10)
T Mean 084 077 075 078 077 076 076 075 078 079 081 075 080 13
(0.81) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) | (0.75) (0.77)  (10)
Median 083 077 075 078 077 077 076 076 078 079 081 075  0.79 13
(0.81) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) | (0.75) (0.77)  (10)
RF/OLS 0.82 076 075 078 076 076 076 076 079 079 082 0.76  0.82 13
(0.80) (0.76) (0.73) (0.78) (0.78) (0.78) (0.75) (0.712) (0.79) (0.79) (0.85)  (0.78) (0.82) (9)
adaLASSO/RF 085 079 075 076 074 074 072 0.72 076 076 080 074  0.70 13
(0.81) (0.78) (0.73) (0.78) (0.77) (0.75) (0.72) (0.68) (0.74) (0.76) (0.81) (0.73) (0.68)  (11)
RMSE count 13 16 13 16 16 17 8 8 16 18 7 8 18
MAE count (10)  (16) (13) (15 (14 (1) (7 (8) (1) (3) (1) ®)  (10)

C.3. Additional Results: CPI-Core. In this section, we report forecasting results for
the Core of the Consumer Price Index. The CPI-Core series exhibits a dynamics quite
different from the other two inflation indexes reported before. More specifically there is

a clear seasonal patern in the series.
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TABLE 25. Forecasting Errors for the PCE from 1990 to 2000

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors
(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132
rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.
Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models
included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.
The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in
how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Personal Consumer Expenditure 1990-2000
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSEcomnt

(MAE count)
RW .00 1.00 100 100 100 [ 100 100 100 100 100 [ 100 1.00 | 1.00 3
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)  (1.00) (1.00) = (1.00) (2)
AR 084 080 08 08 079 080 083 084 090 086 095 092 082 12
(0.86) (0.79) (0.8%) (0.85) (0.79) (0.84) (0.89) (0.80) (0.89) (0.90) (1.00) (0.98) (0.84) (1)
Ucsv 080 085 08 088 085 084 08 087 089 087 090 089 104 12
(0.00) (0.84) (0.87) (0.83) (0.84) (0.85) (0.89) (0.86) (0.86) (0.87) (0.93) (0.89) (L.15)  (11)
LASSO 083 083 08 089 085 088 089 089 096 08 095 08 0.78 8
(0.83) (0.82) (0.87) (0.94) (0.89) (0.93) (1.00) (0.86) (0.96) | (0.91) (1.02) (0.95) | (0.81) (6)
adaLASSO 084 084 086 08 08L 083 086 088 093 08 090 087 082 0
(0.84) (0.83) (0.87) (0.87) (0.82) (0.85) (0.92) (0.83) (0.91) (0.85) (0.94) (0.92) (0.85)  (11)
EINet 0.80 083 087 090 086 089 092 091 095 08 100 | 091 080 7
(0.81) (0.83) (0.89) (0.97) (0.92) (0.96) (1.02) (0.88) (0.96) (0.92) (1.08) (0.98) | (0.83) (2)
adaElnet 085 084 | 086 086 080 084 086 088 095 | 084 092 08 080 8
(0.86) (0.84) | (0.87) (0.90) | (0.82) (0.87) (0.93) (0.84) (0.93)  (0.87) (0.97) (0.94)  (0.83) (6)
Ridge 082 077 085 083 078 082 083 084 090 083 091 084 076 13
(0.82) (0.75) (0.86) (0.85) (0.82) (0.87) (0.90) (0.80) (0.90) (0.87) (0.96) (0.87) (0.80)  (13)
BVAR 099 | 083 095 091 087 094 102 107 115 105 116 110 | 1.1l 6
(1.00) | (0.80)  (1.00) (0.99) (0.95) (1.05) (1.14) (1.08) (1.22) (1.15) (1.29) (1.22)  (1.17) (2)
Bagging 085 082 094 090 086 086 084 083 091 086 097 089 109 12
(0.85) (0.80) (0.95) (0.94) (0.93) | (0.92) (0.91) (0.80) (0.90) (0.88) (1.00) (0.91) (1.19) (9)
CSR 083 083 08 08 0.6 0.78 080 0.81 087 08 090 085 081 13
(0.83) (0.81) (0.87) (0.83) (0.78) (0.80) (0.85) (0.76) (0.86) (0.86) (0.93) (0.89) (0.87)  (13)
IMA 094 100 106 104 100 | 092 102 101 117 100 108 100  1.09 4
(0.97) (1.03) (L.10) (L.06) (1.06) (0.95) (L11) (0.92) (1.15) (1.03) (1.06) (0.99) (1.16) 2)
Factor 089 089 096 | 088 086 092 091 092 105 098 105 104 | 096 3
(0.91) (0.89) (1.01) | (0.89) (0.87) (0.95) (0.98) (0.89) (1.09) (1.04) (1.10) (1.13) (1.04) (1)
T. Factor 095 091 101 084 083 088 089 [ 088 100 096 [ 099 | 097 | 094 6
(0.96) (0.91) (1.07) | (0.85) (0.84) (0.91) (0.98) (0.86) (1.01) (1.01) (1.03) (1.02) (1.02) (3)
Boosting 099 090 101 096 091 098 100 104 106 094 | 099 092  1.09 6
(1.03) | (0.91)  (1.09) (1.02) (0.97) (1.05) (1.09) (1.01) (1.06) [(0:96) (1.08) (0.94) (1.30) (4)
RF 082 077 086 083 078 080 0.80 08 0.84 0.78 0.85 0.79 0.67 13
(0.82) (0.77) (0.90) (0.87) (0.81) (0.85) (0.85) (0.76) (0.82) (0.80) (0.90) (0.82) (0.63) (12
Mean 082 079 084 08 078 080 081 08 08 08 08 084 0.74 13
(0.83) (0.79) (0.85) (0.84) (0.79) (0.83) (0.88) (0.77) (0.86) (0.84) (0.92) (0.88) (0.74) (1)
T Mean 082 080 08 08 079 080 082 08 090 08 08 08 0.75 13
(0.83) (0.79) (0.86) (0.84) (0.80) (0.83) (0.89) (0.79) (0.88) (0.85) (0.94) (0.90) (0.76) (1)
Median 082 080 084 08 079 081 083 084 090 082 08 08 0.75 13
(0.83) (0.79) (0.85) (0.85) (0.81) (0.83) (0.89) (0.79) (0.89) (0.85) (0.94) (0.90) (0.76) (1)
RF/OLS 081 077 083 0.80 076 079 080 08 087 08 08 08 081 13
(0.81) (0.76) (0.84) (0.82) (0.79) (0.84) (0.87) (0.78) (0.86) (0.84) (0.93) (0.87) (0.89)  (13)
adaLASSO/RF = 081 089 091 | 087 08 08 08 08 08 079 090 084 071 11
(0.82) (0.87) (0.94) (0.90) | (0.83) (0.87) (0.89) (0.77) (0.84) (0.83) (0.94) (0.87) (0.71)  (10)
RMSE count 13 15 14 16 17 20 11 12 11 15 18 16 21
MAE count (12) (14 (11 @1y (13 (13 a1y (A1)  (12) (15 (18)  (13)  (16)

In Tables 27-7?7, we report for each model a number of different summary statistics
across all the forecasting horizons, including the accumulated twelve-month horizon for
the full out-of-sample period (1990-2015) as well as for the two subsamples considered,

namely, 1990-2000 and 2001-2015. Columns (1), (2) and (3) report the RMSE, the MAE
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TABLE 26. Forecasting Errors for the PCE from 2001 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors
(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132
rolling windows covering the 2001-2015 period and 180 rolling windows covering the 2001-2015 period.
Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models
included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.
The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in
how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Personal Consumer Expenditure 1990-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSEcomnt

(MAE count)
RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0
(1.00)  (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)
AR 0.91 0.84 0.81 0.84 0.82 0.80 0.79 0.77 0.80 0.83 0.85 0.77 0.99 8
(0.88) (0.82) (0.75) (0.82) (0.83) (0.79) (0.74) (0.72) (0.78) (0.81) (0.83) (0.74) (0.93) (0)
UCsv 0.96 0.86 0.84 0.86 0.83 0.83 0.82 0.81 0.82 0.83 0.85 0.81 0.81 3
(0.94) (0.87) (0.81) (0.84) (0.84) (0.83) (0.82) (0.81) (0.83) (0.83) (0.88) (0.80) ' (0.81) (1)
LASSO 0.83 0.77 0.73 0.77 0.76 0.76 0.75 0.75 0.78 0.80 0.81 0.73 0.79 13
(0.79) (0.74) (0.67) (0.74) (0.77) (0.72) (0.69) (0.68) (0.73) (0.76) (0.78) (0.68) (0.76) (11)
adaLASSO 0.84 0.77 0.74 0.78 0.78 0.77 0.76 0.77 0.79 0.81 0.83 0.73 0.83 13
(0.80) (0.76) (0.69) (0.77) (0.78) (0.74) (0.71) (0.70) (0.74) (0.78) (0.81) (0.70) (0.80) (10)
ElNet 0.84 0.76 0.72 0.76 0.76 0.75 0.74 0.74 0.78 0.80 0.81 0.72 0.78 13
(0.80) (0.74) (0.67) (0.73) (0.76) (0.72) (0.68) (0.67) (0.74) (0.76) (0.78) (0.68) (0.76) (12)
adaElnet 0.84 0.78 0.74 0.78 0.79 0.77 0.76 0.76 0.79 0.81 0.82 0.73 0.83 13
(0.81) (0.76) (0.68) (0.76) = (0.78) (0.74) (0.71) ' (0.69) (0.75) | (0.78) (0.81) ' (0.70) (0.80) (9)
Ridge 0.87 0.76 0.73 0.77 0.76 0.75 0.74 0.73 0.76 0.77 0.78 0.71 0.77 13
(0.84) (0.74) (0.67) (0.75) (0.78) (0.75) (0.69) (0.68) (0.74) (0.74) (0.76) (0.70) (0.76) (11)
BVAR 0.85 0.79 0.75 0.78 0.77 0.77 0.76 0.76 0.79 0.81 0.82 0.76 0.85 12
(0.83) (0.77) (0.70) (0.76) (0.77) (0.74) (0.69) (0.70) (0.75) (0.76) (0.78) (0.71) (0.80) (12)
Bagging 0.88 0.76 0.74 0.81 0.81 0.79 0.82 0.79 0.81 0.80 0.81 0.73 0.68 11
(0.87) 1 (0.75) (0.69) (0.82) (0.88) (0.83) (0.80) (0.80) (0.84) | (0.80) (0.82) ' (0.72) (0.70) (5)
CSR 0.86 0.77 0.75 0.79 0.79 0.79 0.79 0.77 0.81 0.84 0.86 0.80 0.92 10
(0.81) (0.76) (0.68) (0.79) (0.80) (0.77) | (0.73) (0.71) (0.77) | (0.81) (0.84) (0.77) (0.87) (6)
JMA 0.96 0.84 0.78 0.85 0.83 0.82 0.84 0.82 0.86 0.83 0.86 0.77 0.72 6
(0.92) (0.84) (0.75) (0.92) (0.93) (0.89) (0.82) (0.83) (0.89) (0.87) (0.91) (0.83) | (0.73) (1)
Factor 0.89 0.83 0.80 0.83 0.82 0.81 0.81 0.81 0.83 0.83 0.84 0.80 0.95 4
(0.85) (0.82) (0.75) (0.82) (0.83) (0.80) (0.78) (0.77) (0.80) | (0.80) (0.81) (0.77) (0.88) (1)
T. Factor 0.88 0.80 0.76 0.80 0.80 0.79 0.78 0.78 0.79 0.80 0.82 0.78 0.91 8
(0.88) (0.81) (0.72) (0.78) (0.82) (0.80) (0.74) (0.74) (0.77) | (0.78) (0.80) (0.76) (0.86) (2)
Boosting 1.00 0.80 0.77 0.81 0.79 0.80 0.80 0.79 0.82 0.84 0.85 0.79 0.87 11
(0.98) 1 (0.79) (0.73) (0.82) (0.84) (0.82) (0.79) (0.78) (0.85) (0.84) (0.87) (0.78) | (0.93) (3)
RF 0.88 0.76 0.71 0.74 0.72 0.71 0.70 0.70 0.73 0.74 0.76 0.70 0.67 13
(0.82) (0.73) (0.66) (0.73) (0.74) (0.71) (0.67) (0.65) (0.70) (0.71) (0.72) (0.64) (0.63) (13)
Mean 0.85 0.76 0.74 0.77 0.77 0.76 0.75 0.74 0.76 0.77 0.78 0.72 0.81 13
(0.81) (0.75) (0.68) (0.75) (0.77) (0.74) (0.71) (0.68) (0.73) (0.73) (0.76) (0.69) (0.78) (11)
T.Mean 0.84 0.76 0.73 0.77 0.76 0.75 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.67) (0.75) (0.77) (0.73) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (12)
Median 0.84 0.76 0.73 0.77 0.76 0.76 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.68) (0.75) (0.76) (0.74) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (13)
RF/OLS 0.83 0.76 0.74 0.78 0.76 0.76 0.75 0.74 0.77 0.78 0.81 0.74 0.82 13
(0.80) (0.75) (0.68) (0.76) (0.78) (0.75) (0.70) (0.69) (0.76) (0.77) (0.81) (0.74) (0.80) (11)
adaLASSO/RF | 0.86 0.75 0.71 0.73 0.73 0.72 0.69 0.70 0.74 0.76 0.78 0.71 0.69 13
(0.81) (0.73) (0.65) (0.73) (0.74) (0.70) (0.66) (0.64) (0.70) (0.72) (0.75) (0.67) (0.67) (13)
RMSE count 15 16 18 17 20 16 15 15 18 20 17 13 16
MAE count (12) (15) (15) (9) (12) (12) (11) (13) (3) (16) (10) (13) (16)

and the MAD, respectively. In columns (4), (5) and (6) we report the number of times
(across horizons) each model achieved the lowest RMSE, MAE, and MAD, respectively.
Columns (7)—(10) present, for square and absolute losses, the average p-values based either

on the range or the tynax statistics as described in Hansen et al. (2011). Columns (11)
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and (12) show the average p-values of the SPA test proposed by Hansen (2005). Finally,
columns (13) and (14) display the p-value of the multi-horizon test for superior predictive
ability proposed by Quaedvlieg (2017).

Tables 30-32 show the RMSE and, in parenthesis, the MAE for all models relative to
the RW. The error measures were calculated from 132 rolling windows covering the 1990-
2015 period and 180 rolling windows covering the 2001-2015 period. Values in bold show
the most accurate model in each horizon. Cells in gray (blue) show the models included
in the 50% MCS using the squared error (absolute error) as loss function. The MCSs
were constructed based on the maximum ¢ statistic. The last column in the table reports
in how many horizons the row model was included in the MCS for square (absolute) loss.
The last two rows in the table report how many models were included in the MCS for

square and absolute losses.
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TABLE 30. Forecasting Errors for the CPI-Core from 1990 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors
(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132
rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.
Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models
included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.
The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in
how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Consumer Price Index (Core) 1990-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSEcomnt

(MAE count)
RW .00 100 100 100 100 100 100 100 100 100 1.00 | 1.00  1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)  (1.00) (1.00) (2)
AR 087 069 059 [[062 079 093 090 068 | 047 | 049 | 067 121  1.96 4
0.92) (0.70) (0.59) (0.62) (0.80) (0.91) (0.85) [(0:63) (0.45) (0.49) (0.70) (1.27) (2.09) (2)
ucsv 096 080 076 077 086 096 093 084 076 073 082 138 [ 1.02 1
(1.03) (0.80) (0.74) (0.76) (0.87) (0.93) (0.90) (0.80) (0.74) (0.74) (0.84) (1.38) = (1.01) (1)
LASSO 085 066 062 069 08 007 090 072 054 058 080 1.39  1.90 0
(0.92) (0.66) (0.60) (0.68) (0.85) (0.93) (0.86) (0.68) (0.52) (0.57) (0.83) (143) (2.06)  (0)
adaLLASSO 084 065 059 066 08 094 089 073 051 052 072 124 164 0
(0:89) " (0.65) (0.57) (0.65) (0.82) (0.90) (0.85) (0.68) (0.48) (0.51) (0.74) (1.27) (1.62) (1)
ElNet 086 067 061 068 08 098 089 072 055 059 08 146 1.94 0
(0.92) (0.67) (0.60) (0.67) (0.85) (0.94) (0.85) (0.68) (0.53) (0.58) (0.85) (1.49) (2.12) (0)
adaElnet 085 066 060 068 08 094 090 072 050 052 073 126 1.6 0
(0.90) (0.66) (0.58) (0.67) (0.82) (0.90) (0.85) (0.68) (0.48) (0.52) (0.75) (1.30) (1.69) (0)
Ridge 092 066 061 067 08 095 084 068 059 062 087 156 1.3 0
(0.99) (0.67) (0.60) (0.66) (0.85) (0.93) (0.81) [(0:65) (0.58) (0.63) (0.92) (1.62) (1.69) (1)
BVAR 091 071 070 079 101 113 101 08 075 080 110 193 297 0
0.97) (0.71) (0.67) (0.76) (0.99) (1.08) (0.96) (0.79) (0.73) (0.80) (1.15) (1.99) (3.26) (0)
Bagging 0.81 057 0.55 | 067 091 | 096 081 065 048 | 050 071 128  1.33 7
(0.81) (0.56) (0.52) (0.65) (0.87)  (0.88) (0.77) (0.62) (0.46) (0.49) (0.73) (1.28) (1.31) (7
CSR 082 065 057 062 078 089 085 066 046 048 [ 0.65 @ 1.21 177 8
(0.86) (0.65) (0.56) (0.60) (0.77) (0.87) (0.82) | (0.61) (0.45) (0.47)  (0.68) (1.25) (1.78) (7)
JMA 091 068 068 075 105 1.06 096 074 057 055 082 145 150 0
0:92) (0.65 (0.65) (0.74) (0.98) (0.99) (0.91) [(0:68) (0.53) (0.53) (0.81) (1.46) (1.48) 2)
Factor 090 071 062 068 08 096 090 073 | 047 | 052 073 126 207 1
(0.95) (0.71) (0.61) (0.67) (0.87) (0.93) (0.86) (0.68)  (0.46) (0.51) (0.75) (1.29) (2.13) (1)
T. Factor 090 072 064 069 08 097 092 075 047 051 071 125 225 1
(0.94) (0.72) (0.62) (0.68) (0.86) (0.95) (0.83) [(0:69) (0.47) (0.51) (0.75) (1.31) (2.25) (2)
Boosting 094 070 069 079 102 110 098 077 064 072 099 167  3.03 0
(1.00) (0.70) (0.67) (0.78) (1.02) (1.07) (0.94) (0.75) (0.64) (0.73) (1.05) (1.74) (3.19) (0)
RF 084 061 [ 056 062 078 0.87 0.80 0.64 0.43 045 0.63 114 136 9
(0:89) " (0.61) | (0.54) (0.60) (0.78) (0.84) (0.77) (0.61) (0.42) (0.45) (0.66) (1.16) (1.45)  (10)
Mean 081 064 058 064 _ 079 088 081 066 050 052 069 119 159 5
(0.86) (0.63) (0.57) (0.63) (0.79) (0.86) (0.78) (0.62) (0.49) (0.52) (0.72) (1.22) (1.66) (4)
T.Mean 083 064 058 063 [ 079 089 08 067 049 051 070 121 164 2
(0:83)" (0.65 (0.57) (0.63) (0.79) (0.87) (0.80) [(0:63) (0.47) (0.51) (0.72) (1.24) (1.73) (3)
Median 083 065 058 064 [ 079 089 084 068 049 051 070 122 1.64 2
(0:83) (0.65) (0.57) (0.63) (0.79) (0.87) (0.80) [(0:64) (0.47) (0.51) (0.72) (1.25) (1.73) (3)
RF/OLS 082 063 | 057 064 | 080 089 08I 065 046 048 | 0.66 119 1.5 7
©88)7 (0.63) (0.55) (0.62) (0.80)  (0.86) (0.77) (0.61) (0.44) (0.48) (0.69) (1.22) (1.48)  (5)
adaLASSO/RF  0.84 062 [ 056 0.61 078 091 089 069 045 046 065 116 140 7
(0:89) " (0.62) | (0.54) (0.60) (0.76) (0.86) (0.82) [ (0:64) (0.43) (0.45) (0.66) (1.15) (1.43) (9)

RMSE count 3 1 5 4 8 8 1 5 8 2 5 1 2
MAE count o W 6 @ 6 @ @ (12 ¢ @ 6 O @
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TABLE 31. Forecasting Errors for the CPI-Core from 1990 to 2000

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors
(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132
rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.
Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models
included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.
The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in
how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Consumer Price Index (Core) 1990-2000
Forecasting Horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc.  [lifemu

RW .00 100 100 100 100 100 100 100 100 100 1.00 | 1.00  1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)  (1.00) (1.00) (2)
AR 088 069 [ 059 062 079 096 091 071 050 | 054 071 126 216 5
(0.92) (0.70) (0.58)  (0.62) (0.82) (0.96) (0.90) | (0.65) (0.48) (0.53) (0.76) (1.43) (2.38) (3)
Ucsv 091 068 064 072 090 104 091 075 066 068 090 161 | 1.06 1
(0.98) (0.67) (0.60) (0.69) (0.93) (1.02) (0.91) (0.70) (0.61) (0.70) (0.95) (1.75) = (1.03) (1)
LASSO 085 065 061 067 08 101 0091 073 059 063 087 144 101 0
(0.91) [(064)7 (0.58) (0.65) (0.88) (0.98) (0.90) (0.68) (0.56) (0.63) (0.92) (1.59) (2.18) (1)
adaLLASSO 085 063 056 063 08 097 09 075 056 056 077 127  1.39 3
(0.90) [(0:63) (0.53) (0.61) (0.83) (0.95) (0.90) (0.70) (0.53) (0.56) (0.80) (1.38) (1.47) (3)
ElNet 085 066 061 068 08 102 090 073 059 064 089 155 200 0
(0.91) (0.65) (0.58) (0.66) (0.88) (0.99) (0.90) (0.67) (0.56) (0.65) (0.94) (1.70) (2.30) (0)
adaElnet 085 064 | 058 | 065 08 097 090 074 055 057 079 132 147 1
(0.91) [(0:64) (0.54) (0.63) (0.83) (0.95) (0.90) (0.69) (0.52) (0.58) (0.83) (1.45) (1.61) (1)
Ridge 088 065 060 066 08 099 085 | 069 059 063 086 151  1.52 1
(0.95) [(0:65) ] (0.57) (0.63) (0.85) (0.97) (0.85) (0.65) (0.58) (0.65) (0.92) (1.62) (1.66) (1)
BVAR 091 072 072 084 109 128 110 090 081 088 119 204 373 0
(0.97) (0.71) (0.68) (0.80) (1.10) (1.26) (1.10) (0.85) (0.79) (0.90) (1.27) (2.26) (4.49) (0)
Bagging 0.77 057 055 | 065 | 082 093 079 0.65 052 | 056 074 119 122 8
(0.79) (0.55) (0.50) (0:62) (0.82) (0.87) (0.77) (0.59) (0.47) (0.54) (0.74) (1.25) (1.19) (9)
CSR 081 065 0.55 0.59 0.76 0.90 083 066 047 049 066 115 1.6 10
(0.85) (0.64) (0.53) (0.57) (0.77) (0.89) (0.82) (0.61) (0.45) (0.48) (0.67) (1.22) (1.68)  (10)
JMA 085 072 062 073 100 111 096 | 070 058 057 078 144 140 2
(0.86) (0:68) ] (0.58) (0.71) (0.95) (1.04) (0.92) | (0.63) (0.54) (0.56) (0.77) (1.54) (1.41) (3)
Factor 088 075 065 070 080 104 093 082 | 052 | 057 078 136 249 1
(0.91) (0.74) (0.61) (0.68) (0.91) (1.03) (0.92) (0.77) (0.50) (0.57) (0.82) (1.48) (2.63) (0)
T. Factor 092 08 072 074 091 107 099 086 | 052 058 078 135 2091 1
(0.96) (0.80) (0.69) (0.72) (0.94) (1.08) (0.99) (0.81) (0.51) (0.59) (0.83) (1.53) (3.14) (0)
Boosting 092 069 068 080 103 115 097 077 063 073 096 155 296 0
(0.98) (0.69) (0.66) (0.77) (1.05) (1.13) (0.96) (0.72) (0.62) (0.74) (1.03) (1.70) (2.93) (0)
RF 083 061 056 062 079 092 082 067 0.46 0.48 0.64 114 140 10
(0.90) [(0:61) (0.54) (0.60) (0.79) (0.90) (0.81) | (0.62) (0.43) (0.47) (0.67) (1.22) (1.57) (8)
Mean 081 064 058 063 _ 080 093 083 069 053 056 074 124  1.65 1
(0.86) [(0:63)] (0.55) (0.61) (0.82) (0.92) (0.83) | (0.64) (0.51) (0.56) (0.77) (1.35) (1.81) (2)
T Mean 082 065 058 063 [ 080 094 084 | 069 052 055 074 126 168 4
(0.87) [(0:64)] (0.55) (0.62) (0.82) (0.93) (0.84) | (0.64) (0.50) (0.56) (0.78) (1.38) (1.86) ()
Median 083 065 058 063 080 093 085 069 052 056 074 126  1.66 4
(0.83) [(0:64) ] (0.56) (0.62) (0.81) (0.92) (0.84) | (0.64) (0.50) (0.56) (0.78) (1.39) (1.83) (2)
RF/OLS 083 063 056 062 079 003 083 068 049 050 068 118  1.35 7
(0.89) [(0:63)" (0.53) (0.59) (0.80) (0.90) (0.83)  (0.64) (0.46) (0.50) (0.69) (1.24) (1.42)  (7)
adaLASSO/RF  0.85 064 | 055 061 077 093 091 072 | 049 049 066 @ 1.17 137 7
(0.93) [(0:64) (0.51) (0.58) (0.77) (0.89) (0.87) (0.65) (0.43) (0.47) (0.66) (1.21) (1.39) (8)
RMSE count 9 1 8 6 9 8 3 10 8 3 3 1 2
MAE count (B) (13 (5 (7 (5) (5) 1) 9) (6) () (3) (1) @)
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TABLE 32. Forecasting Errors for the CPI-Core from 2001 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors
(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132
rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.
Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models
included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.
The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in
how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Consumer Price Index (Core) 1990-2015
Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSEcomnt

(MAE count)
RW 100 100 100 100 1.00 100 100 1.00 100 100 1.00 [ 1.00  1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)
AR 086 068 060 [[062 079 090 | 089 | 066 043 045 062 116  1.80 8
(0.91) (0.69) (0.59)  (0.63) (0.78) (0.87) (0.81) | (0.61) (0.43) (0.45) (0.66) (1.15) (1.90) (8)
Ucsv 100 090 08 081 | 083 08 094 090 084 078 074 | 109 0.99 4
(1.07) (0.91) (0.85) (0.82) | (0.82) (0.87) (0.90) (0.87) (0.84) (0.77) (0.75)  (1.09) (1.00)  (4)
LASSO 08 066 062 07l 085 094 089 071 049 053 073 134 18
(0.92) (0.68) (0.62) (0.71) (0.84) (0.90) (0.82) (0.69) (0.49) (0.52) (0.75) (1.31) (1.98)  (0)
adaLASSO 084 066 060 069 085 | 091 088 071 | 045 @ 048 [ 066 | 120 174
(0.83)  (0.66) (0.60) (0.69) [(0:82) (0.87) (0.81) (0.67)  (0.44) (0:46) (0.69) (1.I8) (1.72) )
ElNet 087 068 062 069 08 095 08 072 052 054 076 137 186 0
(0.94) (0.69) (0.62) (0.69) (0.83) (0.91) (0.82) (0.68) (0.51) (0.52) (0.78) (1.32) (2.00) (0)
adaElnet 084 067 062 070 084 [ 091 | 089 071 045 048 | 067 120 1.74 3
(0.89) (0.68) (0.61) (0.70) [(0:81) (0.87) (0.81) (0.67) [ (0:44) (0:47) (0.69) (L.17) (1.74) (6)
Ridge 095 068 062 068 08 092 084 068 058 061 08 161  1.67 0
(1.01) (0.68) (0.62) (0.68) (0.85) (0.90) [(0:78)" (0.66) (0.58) (0.61) (0.92) (1.61) (1.70) (1)
BVAR 091 071 068 075 093 100 093 076 069 073 102 181 229 0
0.97)  (0.70) (0.66) (0.73) (0.90) (0.95) (0.86) (0.74) (0.69) (0.73) (1.05) (1.78) (2.49) (0)
Bagging 084 058 0.55 069 098 099 082 066 045 046 068 136  1.38 10
(0.83) (0.57) (0.54) (0.67) (0.92) (0.88) (0.77) (0.64) (0.44) (0.45) (0.71) (1.30) (1.39)  (10)
CSR 082 065 059 | 064 08 088 087 066 045 047 065 127 1.84 8
(0.87)  (0.65) (0.59) (0.63) (0.78) (0.85) (0.81) | (0.62) (0.44) (0.46) (0.68) (1.27) (1.85) (8)
JMA 097 [ 065 072 077 109 102 096 077 057 053 086 146 152 1
(0.97) | (0.63)  (0.70) (0.77) (1.00) (0.95) (0.91) (0.72) (0.52) [(0:50)" (0.85) (1.40) (1.53) (2)
Factor 091 068 060 | 065 084 [ 090 088 [ 065 043 048 | 068 115 171 6
(0.98) (0.70) (0.60)  (0.66) (0.83)  (0.87) (0.82)  (0.60) (0.43) (047)" (0.70) (1.14) (1.81) (7
T. Factor 088 063 057 064 08 08 08 063 042 045 063 113 161 10
(0.92) (0.65) | (0.57) (0.64) (0.80) (0.85) (0:80) (0.59) (0.43) (0.45) (0.67) (1.13) (1.70)  (10)
Boosting 096 071 069 079 101 107 099 078 065 072 100 178 299 0
(1.01) (0.71) (0.68) (0.79) (1.00) (1.03) (0.93) (0.78) (0.66) (0.73) (1.07) (1.78) (3.35) (0)
RF 086 061 055 062 078 0.83 0.78 0.62 0.41 043 0.62 113 1.2 1
(0.8%) (0.61) (0.54) (0.61) (0.76) (0.79) (0.73) (0.60) (0.41) (0.43) (0.65) (1.10) (1.33)  (12)
Mean 0.81 063 058 | 064 0.78 084 080 064 047 049 | 065 114 151 8
(0.86) (0.64) (0.58)  (0.64) (0.77) (0.81) (0.74) (0.61) (0.46) [ (0:48) (0.67) (1.12) (1.56) (9)
T Mean 083 064 058 064 078 08 082 0.66 046 048 | 0.65 116 158 7
(0.83)  (0.65) (0.58) (0.64) (0.77) (0.83) (0:76)" (0.63) (0.45) [(0:47) (0.67) (1.13) (1.64) (8)
Median 083 064 058 064 079 086 083 066 046 048 | 0.65 116  1.60 5
(0.83)  (0.66) (0.58)  (0.64) (0.77) (0.83) (0.77) (0.63) (0.45) [ (0:47) (0.67) (1.14) (1.66) (8)
RF/OLS 082 063 057 065 08 086 079 063 044 046  0.65 1.0 1.57 n
(0.86) (0.63) | (0.57) (0.65) (0.80) (0.83) (0.73) (0.60) (0.42) (0.46) (0.68) (1.20) (1.51)  (10)
adaLASSO/RF = 0.83 061 057 0.62 080 089 086 | 066 042 043 064 116 139 1
(0.86) (0.61) (0.56) (0.61) (0.76) (0.84) (0.79) (0.63) (0.42) (0.42) (0.66) (1.11) (1.45)  (11)
RMSE count 9 6 5 11 10 14 1 10 9 7 13 9 2
MAE count (9) (4) Gy (1)  (12) (14 (8 9)  (10) (14) (13)  (12)  (2)
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