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Abstract: Inflation forecasting is an important but difficult task. In this paper, we
explore the advances in machine learning (ML) methods and the availability of new and
rich datasets to forecast US inflation over a long period of out-of-sample observations.
Despite the skepticism in the previous literature, we show that ML models with a large
number of covariates are systematically more accurate than the benchmarks for several
forecasting horizons both in the 1990s and the 2000s. The ML method that deserves more
attention is the random forest, which dominated all other models in several cases. The
good performance of the random forest method is due not only to its specific method of
variable selection but also the potential nonlinearities between past key macroeconomic
variables and inflation. The results are robust to inflation measures, different samples,
levels of macroeconomic uncertainty, and periods of recession and expansion.
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1. Introduction

It is difficult to overemphasize the importance of forecasting inflation in rational eco-

nomic decision-making. Many contracts concerning employment, sales, tenancy, and debt

are set in nominal terms. Therefore, inflation forecasting is of great value to households,

businesses and policymakers. In addition, central banks rely on inflation forecasts not

only to inform monetary policy but also to anchor inflation expectations and thus en-

hance policy efficacy. Indeed, as part of an effort to improve economic decision-making,

many central banks release their inflation forecasts on a regular basis.

Despite the great benefits of forecasting inflation accurately, improving simple bench-

mark models has been proven to be a major challenge for both academics and practi-

tioners. As Stock & Watson (2010) emphasize, “it is exceedingly difficult to improve

systematically upon simple univariate forecasting models, such as the Atkeson & Oha-

nian (2001) random walk model [...] or the time-varying unobserved components model

in Stock & Watson (2007).” This conclusion is supported by a large literature; see Faust

& Wright (2013) for a recent survey. Nonetheless, this literature has so far largely ig-

nored the recent machine learning (ML) and “big data” boom in economics.1 Moreover,

previous works either focused on a restrictive set of variables or were based on a small

set of factors computed from a larger number of potential predictors known as “diffusion

indexes”; see, for example, Stock & Watson (2002).

“Big data” and ML methods are not passing fads, and investigating whether the com-

bination of these two methods is able to provide more accurate forecasts is of paramount

importance. Gu et al. (2018), for example, show recently that machine learning meth-

ods coupled with more than 900 potential predictors improve substantially out-of-sample

stock return prediction. In a similar spirit, and despite the previous skepticism, we argue

that these methods lead to more accurate inflation forecasts. Moreover, this new set of

models can also help to uncover the main predictors for future inflation, possibly shedding

light on the drivers of price dynamics.

In this paper, we contribute to the literature in a number of ways. First, we robustly

show that it is possible to beat the usual univariate benchmarks for inflation forecasting,

namely, random walk (RW), autoregressive (AR) and unobserved components stochastic

volatility (UCSV) models. We consider several ML models in a data-rich environment

with hundreds of variables from the FRED-MD, a monthly database put together by

1See Varian (2014) and Mullainathan & Spiess (2017) for discussions of ML methods and big data in
economics. In this paper, we call ML models any statistical model that is able to either handle a large
set of covariates and/or describe nonlinear mappings nonparametrically. Some of the methods have been
around even before the “machines”.
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McCracken & Ng (2016), to forecast US inflation during more than twenty years of out-

of-sample observations and we show that the gains can be as large as 30% in terms of

mean squared errors.

Second, we highlight the main set of variables responsible for these forecast improve-

ments. Our results indicate that such set of variables is not sparse, which corroborates

the findings of Giannone et al. (2017) warning against the use of sparse predictive models.

Indeed, we find that ML models that do not impose sparsity are the best performing ones.

In contrast, the high level of aggregation of factor models, which has been one of the most

popular models for macroeconomic forecasting, is not adequate.

Finally, we aim to give a guidance for the choice of which class of ML methods should

be used for inflation forecasting. Throughout the paper, we pay special attention to a

particular ML model, the random forest (RF) of Breiman (2001), which systematically

outperforms the benchmarks, factor models and ten additional ML methods covering a

wide class of specifications: the least absolute shrinkage and selection operator (LASSO)

family, which includes LASSO, adaptive LASSO, elastic net and the adaptive elastic

net; ridge regression (RR); Bayesian vector autoregressions (BVAR); and linear ensemble

methods such as bagging, boosting, complete subset regressions (CSR) and jackknife

model averaging (JMA). RF models are highly nonlinear nonparametric models that have

a tradition in statistics but have only recently attracted attention in economics. This late

success is partly due to the new theoretical results developed by Scornet et al. (2015) and

Wagner & Athey (forthcoming). Notably, Gu et al. (2018) also find that RF, by allowing

for nonlinearities, substantially improves stock return predictions.

1.1. Main takeaways. First, as mentioned before, and contrary to the previous evidence

in Stock & Watson (1999, 2007), Atkeson & Ohanian (2001), and many others, our results

show that consistently beating the benchmark specifications is possible. The ML models

outperform the univariate alternatives, especially if we consider the 2001–2015 period,

when the US inflation was more volatile compared to the 1990s. This is a robust finding for

both individual horizons and the accumulated twelve-month forecasts. Second, although

there is strong evidence of the existence of a small number of factors that drive the joint

dynamics of the potential predictors, factor models deliver inferior forecasts compared to

ML alternatives and are inferior to the RW method for the accumulated twelve-month

horizon. Furthermore, either replacing standard principal component factors with target

factors, as advocated by Bai & Ng (2008), or using boosting to select factors as discussed

in Bai & Ng (2009), improves the results only marginally. Third, RR have a superior

performance compared to the other linear ML methods, especially for short horizons.

However, the RF model delivers the smallest errors for most of the forecasting horizons
3



for both the consumer price index (CPI) and the personal consumption expenditures

(PCE) inflation. The gains, in terms of mean squared error reduction, can be, on average,

of the order of 30%. This is a robust finding that is independent of the sample considered,

the state of the economy or the level of either macroeconomic, financial uncertainty or

real uncertainty. The RF model is an ensemble of fully grown regression trees estimated

on different bootstrap subsamples of the original data. Therefore, the RF model is a

nonsparse, highly nonlinear specification that aims to reduce the high variance of a single

regression tree.

To open the black box of ML methods, we compare the variables selected by the adaptive

LASSO method, RR, and the RF alternative. Following McCracken & Ng (2016), we

classify variables into nine different groups: (i) output and income; (ii) labor market; (iii)

housing; (iv) consumption, orders and inventories; (v) money and credit; (vi) interest and

exchange rates; (vii) prices; (viii) stock market; (ix) principal component factors computed

from the full set of potential predictors. The most important variables for RR and RF

models are stable across forecasting horizons but are quite different between the two

specifications. While for RR, AR terms, prices and employment are the most important

predictors, resembling a sort of backward-looking Phillips curve, RF models give more

importance to prices, interest-exchange rates, employment and housing. LASSO selection

is quite different across forecasting horizons and is, by construction and in opposition to

RF and RR models, sparse. Only AR terms retain their relative importance independent

of the horizon and prices gradually lose their relevance until up to six months ahead but

partially recover for longer horizons. Output-income are more important for medium-term

forecasts. Finally, none of the three classes of models selects either factors or stocks. Not

even RR or RF which produce nonsparse variable selection. This result may indicate that

the high level of cross-section aggregation of the factors is one possible cause for the poor

performance of the factor models.

To disentangle the effects of variable selection from nonlinearity, we also consider alter-

native models. In the first method, we use the variables selected by the RF model and

estimate a linear specification by OLS. In the second method, we estimate an RF speci-

fication with only the regressors selected by the adaptive LASSO method. Both models

outperform the RF only for one-month-ahead forecasting. For longer horizons, the RF

model is still the winner, which provides evidence that both nonlinearity and variable

selection play a key role in the superiority of the RF model.

There are many sources of nonlinearities relating the variables selected and inflation

that could justify the superiority of the RF model. For instance, the relationship be-

tween inflation and employment is nonlinear to the extent that it depends on the degree

of slackness in the economy. Another source of nonlinearities is economic uncertainty as
4



this uncertainty increases the option value of economic decision delays if they have an

irreversible component (Bloom 2009). For example, if it is expensive to dismiss work-

ers, hiring should be nonlinear on uncertainty. In addition, this real option argument

also makes households and businesses less sensitive to changes in economic conditions

when uncertainty is high. Hence, the responses of employment and inflation to inter-

est rate decisions are arguably nonlinear on uncertainty. The presence of a zero lower

bound on nominal interest rates and the implications of this bound for unconventional

monetary policy is another source of nonlinearity among inflation, employment and inter-

est rate variables (Krugman 1998, Eggertsson & Woodford 2003). Finally, to the extent

that houses serve as collateral for loans, not only is monetary policy affected (Iacoviello

2005) but also a housing bubble can form, resulting in a deep credit crash (Geanakoplos

2010, Shiller 2014). Needless to say, these events are highly nonlinear and arguably have

nonlinear effects on inflation, employment and interest rates.

1.2. A brief comparison of the recent literature. The literature on inflation fore-

casting is vast, and there is substantial evidence that models based on the Phillips curve

do not provide good inflation forecasts. Although Stock & Watson (1999) showed that

many production-related variables are potential predictors of US inflation, Atkeson &

Ohanian (2001) showed that in many cases, the Phillips curve fails to beat even simple

naive models. These results inspired researchers to look for different models and vari-

ables to improve inflation forecasts. Among the variables used are financial variables

(Forni et al. 2003), commodity prices (Chen et al. 2014) and expectation variables (Groen

et al. 2013). However, there is no systematic evidence that these models outperform the

benchmarks.

More recently, due to the advancements in computational power, theoretical develop-

ments in ML, and availability of large datasets, researchers have started to consider the

usage of high-dimensional models on top of the well-established (dynamic) factor mod-

els of Stock & Watson (2002), Bai & Ng (2003, 2006), and Reichlin et al. (2000, 2004).

However, most of these studies have either focused only on a very small subset of ML

models or presented a restrictive analysis. For example, Inoue & Kilian (2008) considered

bagging, factor models and other linear shrinkage estimators in an exercise to forecast

US inflation with a small set of real economic activity indicators. Their study is more

limited than ours both in terms of the pool of models considered and richness of the

set of predictors. Nevertheless, the authors were among the few voices that suggested

that ML techniques can deliver nontrivial gains over univariate benchmarks. Medeiros &

Mendes (2016) provided evidence that LASSO-based models outperform both factor and
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AR benchmarks in forecasting US CPI. However, the analysis in the paper is restricted

to a single ML method for just one-month-ahead inflation forecasting.

Most of the previous papers in the literature have explored only linear ML models but

ignored nonlinear alternatives. The reason for this limitation is that most of the papers

in the early days considered only univariate nonlinear models that were, in most cases,

outperformed by simple benchmarks; see Teräsvirta et al. (2005) for an example. The

message of our paper is that the combination of a rich dataset with modern ML tools is

responsible for the nontrivial forecasting gains over traditional univariate benchmarks.2

Finally, this paper is different from many “horse-races” in the literature, as we not only

compare a large number of different models but we also try to clarify the mechanisms

why a given class of models is superior than others and not applying ML methods as pure

black-boxes specifications.

1.3. Organization of the paper. The remainder of this work is organized as follows.

Section 2 gives an overview of the dataset used in the paper. Section 3 describes the

forecasting methodology. The results are detailed in Section 4. We start by giving a birds-

eye view of the full set of results in Section 4.1, whereas in Section 4.2, we analyze the RF

performance with respect to the benchmarks. In Section 4.3, we compare all the models.

Section 5 concludes. The paper has a number of appendices and supplementary materials

that are not for publication. Appendix A documents the dataset used in the paper.

Appendix B presents an overview of the different benchmarks and ML methods/models

considered in the analysis. Appendix ?? briefly describes the tests used to compare the

forecasts from different models. Additional results, including the analysis of other inflation

measures, are presented in Appendix C.

2. Data

Our data consist of 122 variables from the FRED-MD database, which is a large monthly

macroeconomic dataset designed for empirical analysis in data-rich environments. The

dataset is updated in real-time through the FRED database and is available from Michael

McCraken’s webpage.3 For further details, we refer to McCracken & Ng (2016).

In this paper, we use the vintage as of January 2016. Our sample goes from January

1960 to December 2015 (672 observations), and only variables with all observations in

the defined sample period are used. The out-of-sample window is from January 1990

2More recently, Garcia et al. (2017) applied a large number of ML methods, including RFs, to real-time
inflation forecasting in Brazil. The results were very promising and indicated a clear superiority of the
CSR method of Elliott et al. (2013, 2015). However, an important question is whether this is a particular
result for Brazil or if similar findings can be replicated for the US economy.
3https://research.stlouisfed.org/econ/mccracken/fred-databases/
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to December 2015. All variables are transformed as described in Appendix A. The

price indexes are log-differenced only one time. Therefore, πt is the inflation in month

t computed as πt = log(Pt) − log(Pt−1), and Pt is a given price index in period t. We

consider two different price indexes, namely, the CPI and the PCE. Figure 1 displays the

evolution of the CPI inflation rate during the full sample period.

We compare performances not only across models in the out-of-sample window but

also in two subsample periods, namely, 1990 to 2000 (132 out-of-sample observations)

and 2001 to 2015 (180 out-of-sample observations). In Table 1, we report the mean, stan-

dard deviation (Sd), median, maximum, minimum, first-order autocorrelation (AC1), and

sum of the first 36 autocorrelations (AC36) for several macroeconomics variables. These

variables include CPI monthly inflation (πt), CPI twelve-month inflation (π12,t), monthly

growth of the industrial production (∆IPt), twelve-month growth of industrial production

(∆12IPt) and measures of macroeconomic, financial and real uncertainty computed as in

Jurado et al. (2015), and broadly speaking, these measures are the conditional volatility of

the unforecastable part of macroeconomic, financial and firm-level variables, respectively.

In particular, the authors consider forecasting horizons of one, three and twelve months

ahead.4

The statistics in Table 1 give an overview of the economic scenario in each subsample.

The first sample corresponds to a period of low inflation volatility (σ = 0.17%), while in

the second sample, inflation is much more volatile (σ = 0.32%). However, on average,

inflation is higher during 1990-2000 than 2001-2015 and much more persistent as well.

Relative to the 1990-2000 period, inflation was more volatile near the recession in the

early 1990s. The monthly growth in industrial production is on average higher and less

volatile during the first subsample. Finally, uncertainty measures are uniformly higher

during 2001-2015, mainly due to the Great Recession.

3. Methodology

Consider the following model:

πt+h = Th(xt) + ut+h, , h = 1, . . . , H, t = 1, . . . , T, (1)

where πt+h is the inflation in month t+ h; xt = (x1t, . . . , xnt)
′ is a n-vector of covariates,

possibly containing lags of πt and/or common factors as well as a large set of potential

predictors; Th(·) is the mapping between covariates and future inflation; and ut is a zero-

mean random error. The target function Th(xt) can be a single model or an ensemble of

different specifications. There is a different mapping for each forecasting horizon.

4These uncertainty measures are available at Sydney C. Ludvigson’s webpage
(https://www.sydneyludvigson.com/).

7



The direct forecasting equation is given by

π̂t+h|t = T̂h,t−Rh+1:t(xt), (2)

where T̂h,t−Rh+1:t is the estimated target function based on data from time t − Rh + 1

up to t and Rh is the window size, which varies according to the forecasting horizon and

the number of lagged variables in the model. We consider direct forecasts as we do not

make any attempt to predict the covariates. The only exception is the case of the BVAR

model, where joint forecasts for all predictors are computed in a straightforward manner

following the procedure described in Bańbura et al. (2010).

The forecasts are based on a rolling window framework of fixed length. However, as

mentioned before, the actual in-sample number of observations depends on the forecasting

horizon. For example, for the 1990–2000 period, the number of observations is Rh = 360−
h−p−1, where p is the number of lags in the model. For 2001–2015, Rh = 492−h−p−1.

In addition to three benchmark specifications (RW, AR and UCSV models), we consider

factor-augmented AR models, sparsity-inducing shrinkage estimators (LASSO, adaptive

LASSO, elastic net and adaptive elastic net), other shrinkage methods that do not induce

sparsity (RR and BVAR with Minnesota priors), averaging (ensemble) methods (bagging,

CSR and JMA)5 and RF. With respect to the factor-augmented AR models, we consider

in addition to the standard factors computed with principal component analysis a set of

target factors as advocated by Bai & Ng (2008) and boosted factors as in Bai & Ng (2009).

A detailed discussion of the models implemented in this paper can be found in Appendix

B. Finally, we also include in the comparison three different model combination schemes,

namely, simple average, trimmed average and the median of the forecasts.

We find that the RF, a highly nonlinear method, robustly outperforms other methods.

To disentangle the role of variable selection from nonlinearity, we also consider a linear

model where the regressors are selected by the RFs (RF/ordinary least squares, OLS) and

an RF model with regressors preselected by adaptive LASSO (adaLASSO/RF).

Forecasts for the accumulated inflation over the following twelve months is computed,

with the exception of the RW and UCSV models, by aggregating the individual forecasts

for each horizon. In the case of the RW and UCSV models, a different specification is

used to construct the forecast of the 12-month inflation.

4. Results

In this section, we describe our main results for the CPI. More detailed results, robust-

ness checks and a similar set of results for the PCE and the CPI-core can be all found in

the Appendix.

5Bagging and CSR can also be viewed as nonsparsity-inducing shrinkage estimators.
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The models are compared according to three different statistics, namely, the root mean

squared error (RMSE), the mean absolute error (MAE) and the median absolute deviation

from the median (MAD), which are defined for each model and forecasting horizon as

follows:

RMSEm,h =
1

T − T0 + 1

T∑
t=T0

ê2t,m,h,

MAEm,h =
1

T − T0 + 1

T∑
t=T0

|êt,m,h| ,

MADm,h = median [|êt,m,h −median (êt,m,h)|] ,

where êt,m,h = πt − π̂t,m,h and π̂t,m,h is the inflation forecast for month t made by model

m with information up to t− h. The first two performance measures above are the usual

ones in the forecasting literature. MAD, which is less commonly used in empirical papers,

is robust to outliers.

To test whether the forecasts from different models are different, we consider a number

of tests, namely, the model confidence sets (MCS) as proposed in Hansen et al. (2011), the

superior predictive ability (SPA) tests of Hansen (2005), and the multi-horizon uniform

SPA test of Quaedvlieg (2017).

4.1. Overview. In this section, we report an overview of the main findings of the paper.

Tables 2–4 report a number of statistics for each model across all the forecasting hori-

zons, including the accumulated twelve-month horizon. The first three columns report

the average RMSE, the average MAE and the average MAD. Columns (4), (5) and (6)

report the number of times (out of thirteen possible horizons)6 each model achieved the

lowest RMSE, MAE, and MAD, respectively. Columns (7)–(10) present, for square and

absolute losses, the average p-values of the MCS based either on the range or the tmax sta-

tistics. Columns (11) and (12) show the average p-values of the SPA test for the squared

and absolute errors, respectively. Finally, columns (13) and (14) display the p-value of

the uniform multi-horizon test for superior predictive ability and the p-value of the MCS

based on the multi-horizon comparison of the models, respectively. The uniform SPA test

is designed to check for superior performance at each individual horizon. Table 2 shows

the results for the full out-of-sample period (1990–2015), whereas Tables 3 and 4 present

the results for the subsample periods 1990–2000 and 2001–2015, respectively. The bold

figures highlight the best-performing model. The following facts emerge from the tables:

6To be precise, monthly inflation from one month up to twelve months ahead and yearly inflation accu-
mulated over the following twelve months.
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(1) Machine learning models and the use of a large set of predictors are able to sys-

tematically improve the quality of inflation forecasts over traditional benchmarks

in the literature. This is a robust and statistically significant result.

(2) The RF model outperforms all the other alternatives in terms of point statistics.

The superiority of RF is due both to the variable selection mechanism induced

by the method as well as the presence of nonlinearities in the relation between

inflation and its predictors. RF has the lowest RMSEs, MAEs, and MADs across

the horizons and the highest MCS p-values. The RF model also has the highest

p-values in the SPA test, multi-horizon SPA test and multi-horizon MCS. The

improvements over the RW in terms of RMSE, MAE and MAD are almost 30%

and are more pronounced during the second subsample, where inflation volatility

is much higher.

(3) Shrinkage methods also produce more precise forecasts than the benchmarks.

Sparsity-inducing methods are slightly worse than nonsparsity-inducing shrink-

age methods. Overall, the forecasting performance among shrinkage methods is

very similar, and ranking them is difficult.

(4) Factor models are strongly outperformed by other methods. The adoption of

boosting and target factors improves the quality of the forecasts produced by

factor models only marginally. The poor performance of factor models is more

pronounced during the first subsample (low volatility period).

(5) CSR and JMA do not perform well either and are comparable to the factor models.

(6) Forecast ensembles do not bring any significant improvements in any of the per-

formance criteria considered.

(7) In line with Stock & Watson (2007), among the benchmark models, both AR and

UCSV outperform the RW alternative. Furthermore, the UCSV model is slightly

superior to the AR specification.

4.2. Results: Random Forests versus Benchmarks. Tables 5–7 show the results

of the comparison between the RF and the benchmark models. Table 5 presents the

RMSE, MAE and MAD ratios of the AR, UCSV and RF models with respect to the RW

alternative for all the forecasting horizons as well as for the accumulated forecasts over

twelve months. The models with the smallest ratios are highlighted in bold. It is clear

from the table that the RF model has the smallest ratios for all forecasting horizons.

To check whether this is a robust finding across the full out-of-sample period, we also

compute rolling RMSEs, MAEs, and MADs over windows of 48 observations. Table 6

reports the results. The table shows the frequency with which each model achieved the

lowest RMSEs, MAEs and MADs as well as the frequency with which each model was the
10



worst-performing alternative among the four competitors. The RF model is the winning

specification and is superior to the competitors for the majority of time periods, including

the Great Recession. In contrast, the RW model delivers the worst forecasts most of the

time. Figures 2, 3, and 4 show the rolling RMSEs, MAEs, and MADs, respectively,

over the out-of-sample period. As expected, the performance of the RW deteriorates as

the forecasting horizon increases. However, the accomplishments of the RFs seem rather

robust.

Finally, Table 7 reports the p-values of the unconditional Giacomini and White (2000)

test for superior predictive ability for squared (panel (a)) and absolute errors (panel (b)).

Rejections of the null mean that the forecasts are significantly different. It is evident from

the table that the RF has forecasts that are significantly different from and superior to

the three benchmark models.

4.3. Results: The Full Picture. In this section, we compare all models. The main

results are shown in Tables 8–10. Table 8 presents the results for the full out-of-sample

period, whereas Tables 9 and 10 present the results for the 1990–2000 and 2000-2015

periods, respectively. The tables report the RMSEs and, between parenthesis, the MAEs

for all models relative to the RW specification. The error measures were calculated from

132 rolling windows covering the 1990–2000 period and 180 rolling windows covering the

2001–2015 period. Values in bold denote the most accurate model in each horizon. Cells

in gray (blue) show the models included in the 50% MCS using the squared error (absolute

error) as the loss function. The MCSs were constructed based on the maximum t statistic.

The last column in the table reports the number of forecast horizons in which the model

was included in the MCS for the square (absolute) loss. The last two rows in the table

report the number of models included in the MCS for the square and absolute losses.

Several conclusions come out from the tables and we start by analyzing the full out-

of-sample period. Apart from a few short horizons, where either the RF/OLS or the

adaLASSO/RF alternatives are the winning models, the RF alternative delivers the small-

est ratios in most of the cases. The RF is followed closely by shrinkage models, where RR

seems be superior to the other alternatives. RR, RF and the hybrid linear-RF models are

the only specifications included in the MCS for all forecasting horizons. Neither RF nor

RR impose sparsity, which may corroborate the conclusions of Giannone et al. (2017),

who provide evidence against sparsity in several applications. Factor models have very

poor results and are almost never included in the MCS. When factors are combined with

boosting, there is a small gain, but the results are still greatly inferior to those from RF

and shrinkage models. This is particularly curious as there is a correspondence between
11



factor models and RR: RR predictions are weighed combinations of all principal compo-

nent factors of the set of predictors. Several reasons might explain the difference. (1)

lack of clear factor structure in the regressors. This is not the case as shown in Figure

5, where we display the eigenvalues of the covariance matrix of regressors over the fore-

casting period. As can be seen, there is a small number of dominating factors. (2) There

might be factors which explain only a small portion of the total variance of the regressors

but have a high predictive power on inflation. Again, we do not think this is the case

as target factors as well as boosting are specifically designed to enhance the quality of

the predictions but, in this case, do no bring any visible improvement. Furthermore, we

allow the ML methods to select factors as well and, as we are going to show latter, they

are never selected. (3) Finally, which we believe is the most probable explanation is that

although sparsity can be questioned, factor models are a too aggregated representation of

the potential predictors. The results of JMA are not encouraging either. Nevertheless, all

the competing models outperform the RW for almost all horizons. Finally, forecast com-

bination does not provide any significant gain, which can be explained by the empirical

fact that most of the forecasts are positively correlated, as depicted in Figure 6.

Focusing now on the two subsamples, the following conclusions stand out from the

tables. The superiority of RF is more pronounced during the 2000–2015 period, when

inflation is much more volatile. During this period, RF achieves the smallest RMSE and

MAE ratios for almost all horizons. From 1990-2000, the linear shrinkage methods slightly

outperform the RF for short horizons. However, RF dominates for long horizons and for

the twelve-month forecasts. Among the shrinkage models and during the first period,

there is no clear evidence of a single winner. Depending on the horizon, different models

perform the best. Another important fact is that there are fewer models included in the

MSC during the first subsample.

Finally, we test whether the superiority of the RF model with respect to alternative

models depends on the state of the economy. We consider two cases, namely, recessions

versus expansions and high versus low macroeconomic uncertainty. The results of the

test proposed by Giacomini & White (2006) for squared loss functions are presented in

Tables 11 and 12. The tables report the value of the test statistic as well as the respective

p-values. As usual, one, two and three asterisks represent rejection of the null hypothesis

at 10%, 5%, and 1% significance levels, respectively. In Table 11, the results for expansion

periods versus recessions are presented, whereas in Table 12, we consider periods of high

macroeconomic uncertainty versus periods of low macroeconomic uncertainty. Periods of

high (low) macroeconomic uncertainty are those where uncertainty is higher (lower) than

the historical average. For conciseness, we display only the results for the most relevant

models.
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Inspecting the tables, it is clear that the majority of the statistics are negative, meaning

that the RF model is superior than its competitors. For instance, out of 72 entries in each

table, the values of the statistics are positive only in four (Table 11) and seven cases

(Table 12). However, the differences are not statistically significant during recessions.

This result is not surprising as only 34 of the 312 out-of-sample observations are labeled

as recessions. Nevertheless, the magnitudes of the differences are much higher during

recessions. Turning attention now to periods of high (low) macroeconomic uncertainty,

it is evident from Table 12 that the RF model is statistically superior to the benchmark

models for both periods, and as in the previous case, the differences are higher in periods

of greater uncertainty. As argued above, both the degrees of slackness and uncertainty

might be sources of nonlinearities in the economy. The fact that the RF model outperforms

competitors in these states of the economy suggests that allowing for nonlinearities is key

to improving macroeconomic forecasts.

4.4. Opening the Black Box: Variable Selection. In this section, we compare the

predictors selected by some of the ML methods, namely, adaLASSO, ridge and RFs.

We select these three models for two reasons. First, they are generally the three best-

performing models, and second, they have quite different characteristics: while adaLASSO

is a true sparsity-inducing method, RR and RF models are only approximately sparse.

RR is a linear model, and RF is a highly nonlinear specification.

In principle, this analysis is straightforward with sparsity-inducing shrinkage methods

such as the adaLASSO, as the coefficients of potentially irrelevant variables are automat-

ically set to zero.7 For the other ML methods, the analysis is more complex. To keep

the results among models comparable, we adopt the following strategy. For ridge and

adaLASSO, the relative importance measure is computed as the average coefficient size

(divided by the respective standard deviations of the regressors). To measure the im-

portance of each variable for the RF models, we use out-of-bag (OOB) samples.8 When

the bth tree is grown, the OOB samples are passed down the tree and the prediction

accuracy is recorded. Then, the values of the jth variable are randomly permuted in the

OOB sample, and the accuracy is again computed. The decrease in accuracy due to the

permutation is averaged over all trees and is the measure of the importance of the jth

variable in the RF.

7Medeiros & Mendes (2016) showed, for example, that under sparsity conditions, the adaLASSO model
selection is consistent for high-dimensional time series models in very general settings, i.e., the method
correctly selects the “true” set of regressors.
8For a given data point (yt,x

′
t), the OOB sample is the collection of all bootstrap samples that do not

include (yt,x
′
t).
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Due to space constraints, we cannot show the relative importance for each variable,

each lag, each horizon or each estimation window. Therefore, as described in Appendix

A, and following McCracken & Ng (2016), we categorize the variables, including lags,

into the following eight groups: (i) output and income; (ii) labor market; (iii) housing;

(iv) consumption, orders and inventories; (v) money and credit; (vi) interest and exchange

rates; (vii) prices; and (viii) stock market. We also consider two additional groups, namely,

the principal component factors and autoregressive terms. Furthermore, the results are

averaged across all estimation windows.

Figure 7 shows the importance of each variable group for the ridge, adaLASSO, and

RF methods for all the twelve forecasting horizons. For all different methods, the values

in the plots are re-scaled to sum tone.

The set of the most relevant variables for RR and RF models is quite stable across

forecasting horizons but is remarkably different between the two specifications. While for

RR, AR terms, prices and employment are the most important predictors, RF models give

more importance to prices, interest-exchange rates, employment and housing. LASSO

selection is quite different across forecasting horizons, and only AR terms retain their

relative importance independent of the horizon. Prices gradually lose their relevance

until up to six-months-ahead and partially recover relevance when longer horizons are

considered. Output-income are more important for medium-term forecasts. Finally, none

of the three classes of models selects either factors or stocks. This result may indicate that

the high level of cross-section aggregation of the factors is causing the poor performance.

To compare the degree of sparsity of each model, we report word clouds of the selected

variables in Appendix C.1.

5. Conclusions

We show that with the recent advances in ML methods and the availability of new

and rich datasets, it is possible to improve inflation forecasts. Models such as LASSO,

bagging, RF and others are able to produce more accurate forecasts than the standard

benchmarks. These results highlight the benefits of ML methods and rich datasets for

macroeconomic forecasting. Although our paper focuses on inflation forecasting in the

US, one can easily apply ML methods to forecast other macroeconomic series in a variety

of countries. We leave for further research the question as to whether ML methods can

systematically outperform standard methods when other macroeconomic series, such as

industrial production, and countries are considered.

The RF method deserves special attention as it delivers the smallest errors for most

forecasting horizons in the two out-of-sample periods (1990–1999 and 2001–2015). The
14



good performance of the RF is due both to potential nonlinearities in the relationship

between inflation and its predictors and the variable selection mechanism of such a model.

The selection of variables for RF models is quite stable across forecasting horizons.

These variables are mostly selected from the following four groups of variables: prices, ex-

change and interest rates, housing and labor market. Although it is difficult to disentangle

the precise sources of nonlinearities that the RF method uncovers, this variable selection

may shed light on them. In fact, there are many theoretical reasons that nonlinearities

may be induced among inflation, interest rate, labor market outcomes and housing. For

example, the relationship between inflation and employment depends on the degree of

slackness in the economy. In addition, as we argued above, uncertainty might induce

nonlinearities among these variables. Finally, part of the out-of-sample window encom-

passes quarters when the zero lower bound on nominal interest rates is binding, which

is another source of nonlinearity. This out-of-sample window also encompasses a period

in which a housing bubble led to a credit crunch, which are events with highly nonlinear

consequences.

The RF is the winning method not only in the full sample but also in the periods

of expansion and recession as well as low uncertainty and high uncertainty. Relative

to other methods, the RF performs particularly well in periods of high uncertainty. In

addition, the RF also outperforms other methods during and after the Great Recession,

when uncertainty skyrocketed and when the zero lower bound was binding. Altogether,

these results suggest that the relationships among key macroeconomic variables might

be highly nonlinear. If this is the case, the various linear methods widely applied in

the profession not only to forecast variables but also to achieve other objectives such as

approximate DSGE models might lead to inaccurate results.

Finally, in this paper, we focus on the RF model due to its flexibility and scalability

for very large datasets. Nevertheless, alternative nonlinear methods such as deep learning

and other semiparametric models should also be considered in future work.
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TABLES AND FIGURES

Figure 1. Inflation rate (CPI, PCE and CPI core) from 1960 to 2015.

The figure shows the time evolution of the consumer price index (CPI), the personal consumption ex-

penditures (PCE) and the core CPI inflation measures from January 1960 to December 2015 (672 ob-

servations). Inflation is computed as πt = log(pt) − log(pt−1), where pt represents each one of the price

measures considered in this paper. Shaded areas represent recession periods.
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Table 5. Forecasting Results: RMSE, MAE and MAD Ratios (1990–2015)

The table reports the root mean squared error (RMSE), mean absolute error (MAE) and median absolute

deviation from the median (MAD) ratios with respect to the random walk model for the full out-of-sample

period (1990–2015). The statistics for the best-performing model are highlighted in bold.
Panel (a): RMSE Ratio

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

AR 0.902 0.809 0.790 0.805 0.786 0.791 0.783 0.764 0.779 0.824 0.837 0.753 1.218
UCSV 0.954 0.816 0.797 0.813 0.783 0.777 0.784 0.776 0.770 0.804 0.832 0.781 0.908

RF 0.844 0.731 0.706 0.738 0.711 0.715 0.718 0.712 0.722 0.763 0.773 0.685 0.766

Panel (b): MAE Ratio

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

AR 0.874 0.791 0.782 0.805 0.802 0.806 0.777 0.760 0.807 0.847 0.861 0.764 1.220
UCSV 0.911 0.817 0.786 0.803 0.801 0.795 0.796 0.787 0.784 0.799 0.851 0.777 0.894

RF 0.811 0.721 0.711 0.749 0.727 0.728 0.699 0.681 0.717 0.747 0.767 0.668 0.774

Panel (c): MAD Ratio

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

AR 0.738 0.703 0.815 0.822 0.828 0.755 0.664 0.685 0.767 0.697 0.769 0.600 0.889
UCSV 0.876 0.770 0.832 0.906 0.878 0.790 0.761 0.835 0.857 0.829 0.884 0.777 0.876

RF 0.698 0.633 0.772 0.841 0.750 0.728 0.653 0.639 0.728 0.685 0.706 0.575 0.587
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Table 6. Forecasting Results: Ranking of Models (1990–2015)

The table reports the frequency with which each model achieved the best (worst) performance statistics

over a rolling window period of four years (48 observations).
Panel (a): Lowest Rolling RMSE

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.083
AR 0.083 0.049 0.000 0.158 0.011 0.011 0.098 0.177 0.117 0.128 0.113 0.000 0.000

UCSV 0.023 0.049 0.211 0.098 0.181 0.109 0.004 0.030 0.192 0.109 0.094 0.000 0.236
RF 0.894 0.902 0.789 0.743 0.808 0.879 0.898 0.792 0.691 0.762 0.755 1.000 0.681

Panel (b): Lowest Rolling MAE

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.039
AR 0.166 0.034 0.000 0.049 0.000 0.023 0.098 0.136 0.132 0.064 0.049 0.023 0.000

UCSV 0.151 0.177 0.257 0.226 0.151 0.155 0.000 0.072 0.242 0.226 0.094 0.023 0.201
RF 0.683 0.789 0.743 0.725 0.849 0.823 0.902 0.792 0.626 0.709 0.762 0.955 0.760

Panel (c): Lowest Rolling MAD

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.136 0.000 0.034 0.000 0.091 0.045 0.004 0.000 0.034 0.053 0.026 0.045 0.020
AR 0.234 0.162 0.234 0.230 0.121 0.234 0.264 0.321 0.109 0.147 0.423 0.234 0.039

UCSV 0.038 0.192 0.268 0.328 0.094 0.117 0.034 0.008 0.219 0.087 0.034 0.019 0.051
RF 0.592 0.645 0.464 0.442 0.694 0.604 0.698 0.672 0.638 0.713 0.517 0.702 0.890

Panel (d): Highest Rolling RMSE

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.823 0.985 0.936 0.992 0.977 0.996 1.000 1.000 0.864 0.804 0.713 0.849 0.000
AR 0.000 0.004 0.057 0.008 0.023 0.004 0.000 0.000 0.136 0.189 0.287 0.151 0.969

UCSV 0.177 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031
RF 0.000 0.011 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Panel (e): Highest Rolling MAE

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.898 0.943 0.864 1.000 0.992 0.966 1.000 0.943 0.819 0.728 0.687 0.770 0.031
AR 0.083 0.034 0.128 0.000 0.008 0.034 0.000 0.057 0.181 0.272 0.283 0.230 0.862

UCSV 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.106
RF 0.000 0.023 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000

Panel (f): Highest Rolling MAD

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.683 0.940 0.853 0.804 0.796 0.657 0.811 0.943 0.774 0.804 0.789 0.921 0.315
AR 0.053 0.026 0.117 0.098 0.102 0.068 0.042 0.019 0.098 0.034 0.019 0.008 0.512

UCSV 0.215 0.034 0.026 0.098 0.042 0.260 0.140 0.038 0.106 0.143 0.192 0.072 0.173
RF 0.049 0.000 0.004 0.000 0.060 0.015 0.008 0.000 0.023 0.019 0.000 0.000 0.000
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Table 7. Forecasting Results: Superior Predictive Ability Test (1990–2015)

The table reports the p-values of the unconditional Giacomini-White test for superior predictive ability

between the random forest models and each of the benchmark models. The test is based on the full

out-of-sample period. Panel (a) presents the results for squared errors, while panel (b) shows the results

for absolute errors.
Panel (a): Giacomini-White Test (Sq. Errors)

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.003 0.000 0.000 0.001 0.006 0.012 0.010 0.003 0.003 0.027 0.024 0.001 0.049
AR 0.002 0.010 0.023 0.045 0.024 0.024 0.056 0.075 0.047 0.062 0.008 0.000 0.021

UCSV 0.003 0.003 0.013 0.055 0.055 0.024 0.001 0.000 0.003 0.038 0.002 0.000 0.072

Panel (b): Giacomini-White Test (Abs. Errors)

Forecasting Horizon
Model 1 2 3 4 5 6 7 8 9 10 11 12 Acc.

RW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023
AR 0.000 0.000 0.001 0.012 0.002 0.005 0.009 0.017 0.007 0.004 0.000 0.000 0.000

UCSV 0.000 0.000 0.010 0.029 0.003 0.007 0.000 0.000 0.007 0.054 0.008 0.000 0.078
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Figure 2. Rolling RMSE.

The figure displays the root mean squared errors (RMSE) computed over rolling windows of 48 observa-

tions. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b) displays the results

for six-months-ahead forecasts (h = 6), panel (c) displays the results for twelve-months-ahead forecasts

(h = 12), and finally, Panel (d) displays the results for the accumulated twelve month forecasts.
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Figure 3. Rolling MAE.

The figure displays the mean absolute errors (MAE) computed over rolling windows of 48 observations.

Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b) displays the results for six-

months-ahead forecasts (h = 6), panel (c) displays the results for twelve-months-ahead forecasts (h = 12),

and finally, panel (d) displays the results for the accumulated twelve month forecasts.
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Figure 4. Rolling MAD.

The figure displays the mean absolute deviation from the median (MAD) computed over rolling windows

of 48 observations. Panel (a) displays the results for one-month-ahead forecasts (h = 1), panel (b) displays

the results for six-months-ahead forecasts (h = 6), Panel (c) displays the results for twelve-months-ahead

forecasts (h = 12), and finally, panel (d) displays the results for the accumulated twelve month forecasts.
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Table 8. Forecasting Errors for the CPI from 1990 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors

(MAE) for all models relative to the random walk (RW). The error measures were calculated from 132

rolling windows covering the 1990-2000 period and 180 rolling windows covering the 2001-2015 period.

Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models

included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.

The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in

how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table report how many models were included in the MCS for square and absolute losses.
Consumer Price Index 1990–2015

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1)

AR 0.90 0.81 0.79 0.81 0.79 0.79 0.78 0.76 0.78 0.82 0.84 0.75 1.22 9
(0.87) (0.79) (0.78) (0.81) (0.80) (0.81) (0.78) (0.76) (0.81) (0.85) (0.86) (0.76) (1.22) (0)

UCSV 0.95 0.82 0.80 0.81 0.78 0.78 0.78 0.78 0.77 0.80 0.83 0.78 0.91 8
(0.91) (0.82) (0.79) (0.80) (0.80) (0.79) (0.80) (0.79) (0.78) (0.80) (0.85) (0.78) (0.89) (3)

LASSO 0.83 0.75 0.73 0.76 0.74 0.75 0.75 0.73 0.75 0.80 0.82 0.73 0.98 11
(0.82) (0.74) (0.73) (0.78) (0.77) (0.75) (0.74) (0.71) (0.76) (0.81) (0.84) (0.74) (1.04) (9)

adaLASSO 0.84 0.76 0.74 0.77 0.75 0.75 0.76 0.75 0.76 0.80 0.83 0.72 0.96 11
(0.81) (0.75) (0.72) (0.77) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.84) (0.73) (0.96) (11)

ElNet 0.83 0.75 0.73 0.76 0.75 0.74 0.75 0.74 0.76 0.81 0.82 0.73 0.98 11
(0.82) (0.74) (0.73) (0.78) (0.78) (0.76) (0.75) (0.71) (0.77) (0.81) (0.85) (0.75) (1.05) (9)

adaElnet 0.84 0.75 0.73 0.77 0.75 0.75 0.75 0.74 0.76 0.80 0.81 0.73 0.96 11
(0.82) (0.74) (0.72) (0.76) (0.75) (0.74) (0.73) (0.71) (0.75) (0.79) (0.83) (0.75) (0.97) (11)

Ridge 0.85 0.73 0.72 0.75 0.74 0.75 0.75 0.73 0.74 0.77 0.78 0.70 0.89 13
(0.83) (0.72) (0.72) (0.77) (0.76) (0.76) (0.73) (0.71) (0.74) (0.77) (0.79) (0.71) (0.93) (13)

BVAR 0.86 0.76 0.75 0.77 0.74 0.76 0.77 0.76 0.77 0.82 0.83 0.74 1.07 11
(0.87) (0.73) (0.75) (0.79) (0.78) (0.78) (0.76) (0.76) (0.81) (0.83) (0.85) (0.76) (1.09) (8)

Bagging 0.83 0.76 0.76 0.80 0.78 0.79 0.83 0.81 0.78 0.82 0.83 0.74 0.82 11
(0.84) (0.78) (0.79) (0.87) (0.86) (0.85) (0.83) (0.80) (0.80) (0.84) (0.86) (0.78) (0.88) (4)

CSR 0.85 0.77 0.76 0.79 0.77 0.79 0.79 0.77 0.79 0.83 0.84 0.76 1.13 11
(0.84) (0.76) (0.75) (0.79) (0.79) (0.79) (0.76) (0.74) (0.79) (0.83) (0.84) (0.77) (1.11) (3)

JMA 0.99 0.82 0.84 0.85 0.84 0.81 0.91 0.86 0.84 0.95 0.92 0.80 0.88 2
(0.99) (0.85) (0.89) (0.94) (0.96) (0.90) (0.91) (0.87) (0.93) (0.96) (0.96) (0.83) (0.91) (1)

Factor 0.87 0.78 0.78 0.79 0.78 0.78 0.80 0.81 0.82 0.84 0.84 0.78 1.17 4
(0.88) (0.80) (0.80) (0.82) (0.82) (0.80) (0.78) (0.80) (0.87) (0.87) (0.87) (0.82) (1.21) (0)

T. Factor 0.88 0.79 0.78 0.80 0.77 0.79 0.79 0.80 0.80 0.82 0.83 0.78 1.17 3
(0.87) (0.82) (0.81) (0.84) (0.83) (0.84) (0.80) (0.80) (0.84) (0.87) (0.86) (0.80) (1.23) (0)

Boosting 0.95 0.77 0.76 0.78 0.77 0.79 0.79 0.78 0.79 0.83 0.84 0.74 1.17 10
(0.96) (0.80) (0.81) (0.85) (0.84) (0.86) (0.84) (0.82) (0.85) (0.86) (0.86) (0.75) (1.32) (1)

RF 0.84 0.73 0.71 0.74 0.71 0.72 0.72 0.71 0.72 0.76 0.77 0.68 0.77 13
(0.81) (0.72) (0.71) (0.75) (0.73) (0.73) (0.70) (0.68) (0.72) (0.75) (0.77) (0.67) (0.77) (13)

Mean 0.83 0.75 0.73 0.76 0.74 0.74 0.75 0.74 0.75 0.77 0.78 0.71 0.95 12
(0.81) (0.74) (0.73) (0.76) (0.76) (0.75) (0.73) (0.71) (0.75) (0.76) (0.78) (0.70) (0.97) (12)

T.Mean 0.84 0.74 0.73 0.75 0.74 0.74 0.75 0.73 0.74 0.78 0.79 0.71 0.95 12
(0.81) (0.74) (0.72) (0.76) (0.75) (0.74) (0.72) (0.70) (0.74) (0.77) (0.79) (0.70) (0.96) (12)

Median 0.84 0.75 0.72 0.76 0.74 0.74 0.75 0.73 0.74 0.78 0.79 0.71 0.94 12
(0.81) (0.74) (0.72) (0.76) (0.76) (0.74) (0.73) (0.70) (0.74) (0.77) (0.79) (0.71) (0.97) (12)

RF/OLS 0.81 0.73 0.72 0.75 0.74 0.75 0.75 0.74 0.74 0.78 0.79 0.71 0.94 13
(0.79) (0.73) (0.72) (0.76) (0.76) (0.76) (0.73) (0.72) (0.75) (0.78) (0.81) (0.72) (0.97) (13)

adaLASSO/RF 0.85 0.76 0.72 0.73 0.73 0.72 0.72 0.71 0.72 0.79 0.82 0.70 0.80 13
(0.82) (0.73) (0.72) (0.74) (0.74) (0.73) (0.71) (0.68) (0.72) (0.79) (0.82) (0.68) (0.82) (13)

RMSE count 14 15 16 17 19 19 17 15 17 18 19 8 8
MAE count (12) (11) (12) (11) (10) (12) (13) (11) (10) (15) (16) (7) (9)
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Figure 5. Eigenvalues of the matrix of contemporaneous regressor.
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Figure 6. Correlation of the Forecasts for the CPI from 1990 to 2015
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Table 9. Forecasting Errors for the CPI from 1990 to 2000

The table shows the root mean squared error (RMSE), and between parenthesis, the mean absolute

errors (MAE) for all models relative to the random walk (RW). The error measures were calculated

from 132 rolling windows covering the 1990-2000 period and 180 rolling windows covering the 2001-2015

period. Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the

models included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss

functions. The MCSs were constructed based on the maximum t-statistic. The last column in the table

reports in how many horizons the row model was included in the MCS for square (absolute) loss. The

last two rows in the table report how many models were included in the MCS for square and absolute

losses.
Consumer Price Index 1990–2000

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (4)

AR 0.84 0.82 0.88 0.82 0.78 0.79 0.79 0.80 0.87 0.89 0.95 0.85 1.24 10
(0.88) (0.83) (0.92) (0.83) (0.81) (0.84) (0.84) (0.80) (0.94) (0.98) (1.04) (0.94) (1.38) (6)

UCSV 0.86 0.84 0.87 0.87 0.85 0.85 0.86 0.85 0.86 0.89 0.94 0.88 1.00 8
(0.88) (0.85) (0.88) (0.87) (0.86) (0.86) (0.87) (0.84) (0.88) (0.91) (0.96) (0.89) (1.02) (11)

LASSO 0.83 0.82 0.88 0.83 0.79 0.78 0.80 0.81 0.88 0.92 0.97 0.85 1.24 9
(0.88) (0.84) (0.92) (0.84) (0.83) (0.84) (0.88) (0.83) (0.96) (1.02) (1.08) (0.96) (1.41) (5)

adaLASSO 0.81 0.82 0.87 0.83 0.75 0.75 0.77 0.77 0.85 0.87 0.92 0.82 1.03 13
(0.84) (0.82) (0.86) (0.80) (0.73) (0.77) (0.81) (0.77) (0.90) (0.92) (1.00) (0.89) (1.08) (13)

ElNet 0.81 0.81 0.88 0.83 0.80 0.79 0.82 0.81 0.92 0.92 1.00 0.89 1.26 7
(0.86) (0.84) (0.92) (0.86) (0.86) (0.85) (0.92) (0.83) (1.02) (1.02) (1.14) (1.02) (1.47) (4)

adaElnet 0.81 0.82 0.86 0.80 0.74 0.75 0.77 0.78 0.87 0.87 0.92 0.87 1.06 12
(0.85) (0.83) (0.86) (0.77) (0.73) (0.78) (0.81) (0.78) (0.92) (0.93) (1.00) (0.95) (1.13) (12)

Ridge 0.79 0.77 0.86 0.80 0.76 0.80 0.80 0.80 0.86 0.85 0.88 0.76 0.99 12
(0.83) (0.78) (0.90) (0.81) (0.78) (0.84) (0.85) (0.79) (0.90) (0.92) (0.96) (0.82) (1.15) (12)

BVAR 0.97 0.80 0.92 0.83 0.77 0.84 0.87 0.90 1.00 0.98 1.02 0.88 1.43 6
(1.00) (0.77) (0.96) (0.88) (0.84) (0.93) (0.98) (0.95) (1.12) (1.10) (1.16) (1.01) (1.56) (1)

Bagging 0.85 0.86 1.02 0.92 0.90 0.91 0.90 0.86 0.91 0.91 0.93 0.79 1.02 8
(0.86) (0.87) (1.04) (0.95) (0.93) (0.95) (0.92) (0.82) (0.94) (0.95) (0.99) (0.87) (1.15) (8)

CSR 0.83 0.85 0.89 0.81 0.77 0.76 0.76 0.76 0.85 0.88 0.91 0.81 1.11 10
(0.89) (0.89) (0.92) (0.82) (0.79) (0.81) (0.82) (0.76) (0.91) (0.95) (0.97) (0.89) (1.25) (8)

JMA 0.94 1.01 1.17 0.99 1.03 1.01 1.06 1.03 1.21 1.13 1.13 0.93 1.00 1
(1.00) (1.02) (1.19) (1.01) (1.07) (1.05) (1.06) (1.01) (1.29) (1.19) (1.20) (0.98) (1.08) (2)

Factor 0.87 0.85 0.98 0.90 0.89 0.86 0.84 0.90 1.02 0.97 1.04 0.98 1.51 1
(0.96) (0.92) (1.05) (0.97) (0.92) (0.90) (0.88) (0.91) (1.14) (1.09) (1.15) (1.14) (1.72) (1)

T. Factor 0.87 0.91 1.01 0.98 0.92 0.94 0.86 0.91 1.04 1.02 1.02 0.95 1.62 0
(0.93) (0.98) (1.13) (1.07) (1.02) (1.05) (0.94) (0.93) (1.16) (1.18) (1.15) (1.10) (1.91) (0)

Boosting 0.96 0.90 1.05 0.91 0.88 0.95 0.95 0.97 1.02 0.96 0.97 0.81 1.66 5
(1.09) (0.98) (1.16) (0.98) (0.97) (1.06) (1.06) (1.03) (1.12) (1.06) (1.07) (0.89) (1.92) (3)

RF 0.79 0.78 0.85 0.77 0.73 0.76 0.76 0.77 0.82 0.82 0.85 0.72 0.87 13
(0.82) (0.78) (0.88) (0.77) (0.76) (0.79) (0.78) (0.75) (0.86) (0.86) (0.89) (0.76) (0.94) (12)

Mean 0.80 0.79 0.85 0.79 0.76 0.77 0.77 0.77 0.84 0.84 0.87 0.78 1.02 13
(0.83) (0.81) (0.87) (0.80) (0.79) (0.81) (0.81) (0.76) (0.90) (0.91) (0.94) (0.85) (1.11) (12)

T.Mean 0.80 0.80 0.85 0.79 0.75 0.76 0.77 0.77 0.85 0.84 0.89 0.79 1.04 13
(0.84) (0.82) (0.87) (0.79) (0.77) (0.80) (0.81) (0.78) (0.91) (0.91) (0.97) (0.87) (1.15) (12)

Median 0.80 0.80 0.85 0.79 0.75 0.76 0.77 0.77 0.85 0.85 0.89 0.79 1.05 13
(0.84) (0.83) (0.88) (0.79) (0.78) (0.80) (0.82) (0.77) (0.91) (0.91) (0.97) (0.87) (1.16) (12)

RF/OLS 0.80 0.80 0.86 0.78 0.74 0.77 0.77 0.78 0.85 0.85 0.88 0.76 1.01 13
(0.82) (0.82) (0.89) (0.79) (0.76) (0.81) (0.82) (0.78) (0.90) (0.92) (0.96) (0.83) (1.14) (12)

adaLASSO/RF 0.79 0.81 0.91 0.77 0.72 0.77 0.77 0.77 0.82 0.89 0.90 0.72 0.89 12
(0.84) (0.81) (0.94) (0.77) (0.73) (0.81) (0.81) (0.77) (0.86) (0.94) (0.99) (0.76) (0.95) (12)

RMSE count 12 18 14 16 11 14 10 15 14 18 16 11 13
MAE count (12) (15) (9) (10) (3) (14) (13) (15) (15) (16) (14) (13) (13)
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Table 10. Forecasting Errors for the CPI from 2001 to 2015

The table shows the root mean squared error (RMSE), and between parenthesis, the mean absolute

errors (MAE) for all models relative to the random walk (RW). The error measures were calculated

from 132 rolling windows covering the 1990-2000 period and 180 rolling windows covering the 2001-2015

period. Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the

models included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss

functions. The MCSs were constructed based on the maximum t-statistic. The last column in the table

reports in how many horizons the row model was included in the MCS for square (absolute) loss. The

last two rows in the table report how many models were included in the MCS for square and absolute

losses.
Consumer Price Index 2001–2015

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)

AR 0.92 0.81 0.78 0.80 0.79 0.79 0.78 0.76 0.77 0.81 0.82 0.73 1.21 7
(0.87) (0.78) (0.74) (0.79) (0.80) (0.80) (0.75) (0.75) (0.76) (0.80) (0.79) (0.70) (1.17) (0)

UCSV 0.98 0.81 0.79 0.80 0.77 0.77 0.77 0.76 0.76 0.79 0.81 0.76 0.89 9
(0.93) (0.81) (0.76) (0.77) (0.78) (0.77) (0.77) (0.77) (0.75) (0.76) (0.81) (0.73) (0.85) (5)

LASSO 0.84 0.74 0.71 0.75 0.74 0.74 0.75 0.72 0.74 0.78 0.79 0.70 0.91 13
(0.79) (0.71) (0.67) (0.75) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.75) (0.65) (0.91) (12)

adaLASSO 0.84 0.75 0.72 0.76 0.75 0.75 0.76 0.74 0.75 0.79 0.81 0.70 0.93 13
(0.80) (0.72) (0.68) (0.76) (0.76) (0.73) (0.71) (0.69) (0.71) (0.75) (0.78) (0.67) (0.92) (11)

ElNet 0.84 0.74 0.71 0.74 0.73 0.74 0.74 0.73 0.73 0.79 0.79 0.70 0.91 13
(0.80) (0.70) (0.67) (0.74) (0.74) (0.72) (0.69) (0.67) (0.69) (0.73) (0.74) (0.64) (0.92) (12)

adaElnet 0.85 0.74 0.72 0.76 0.75 0.75 0.75 0.74 0.74 0.79 0.80 0.70 0.93 12
(0.81) (0.71) (0.68) (0.76) (0.76) (0.73) (0.70) (0.68) (0.70) (0.74) (0.76) (0.67) (0.92) (11)

Ridge 0.86 0.72 0.70 0.75 0.73 0.74 0.74 0.72 0.72 0.76 0.77 0.69 0.86 12
(0.83) (0.70) (0.67) (0.75) (0.75) (0.74) (0.69) (0.68) (0.69) (0.71) (0.73) (0.67) (0.86) (12)

BVAR 0.83 0.75 0.72 0.75 0.74 0.74 0.75 0.74 0.74 0.79 0.79 0.72 0.99 13
(0.81) (0.72) (0.68) (0.75) (0.75) (0.73) (0.69) (0.69) (0.70) (0.73) (0.74) (0.67) (0.93) (12)

Bagging 0.82 0.74 0.72 0.78 0.76 0.77 0.81 0.80 0.76 0.80 0.81 0.73 0.77 11
(0.84) (0.74) (0.71) (0.83) (0.84) (0.82) (0.80) (0.79) (0.76) (0.80) (0.82) (0.74) (0.80) (4)

CSR 0.86 0.75 0.74 0.78 0.78 0.79 0.80 0.77 0.78 0.82 0.83 0.75 1.12 10
(0.82) (0.71) (0.69) (0.78) (0.79) (0.78) (0.74) (0.73) (0.75) (0.78) (0.80) (0.73) (1.07) (5)

JMA 1.00 0.78 0.79 0.83 0.80 0.77 0.89 0.83 0.79 0.91 0.88 0.77 0.84 5
(0.99) (0.78) (0.79) (0.92) (0.91) (0.84) (0.85) (0.82) (0.81) (0.88) (0.87) (0.78) (0.85) (1)

Factor 0.87 0.77 0.75 0.77 0.76 0.77 0.79 0.80 0.79 0.81 0.81 0.74 1.10 9
(0.84) (0.76) (0.72) (0.77) (0.78) (0.76) (0.74) (0.76) (0.78) (0.79) (0.77) (0.69) (1.04) (5)

T. Factor 0.88 0.76 0.74 0.76 0.74 0.76 0.78 0.78 0.76 0.78 0.80 0.74 1.05 9
(0.85) (0.75) (0.71) (0.74) (0.75) (0.76) (0.75) (0.75) (0.74) (0.76) (0.76) (0.69) (1.00) (6)

Boosting 0.95 0.75 0.72 0.76 0.74 0.76 0.77 0.75 0.76 0.81 0.81 0.73 1.03 12
(0.91) (0.72) (0.70) (0.79) (0.78) (0.79) (0.76) (0.75) (0.76) (0.79) (0.79) (0.69) (1.13) (8)

RF 0.86 0.72 0.69 0.73 0.71 0.71 0.71 0.70 0.71 0.75 0.76 0.68 0.74 13
(0.81) (0.70) (0.66) (0.74) (0.71) (0.70) (0.67) (0.66) (0.67) (0.70) (0.72) (0.63) (0.72) (13)

Mean 0.84 0.74 0.72 0.75 0.74 0.74 0.75 0.74 0.73 0.76 0.77 0.69 0.93 13
(0.80) (0.71) (0.69) (0.74) (0.75) (0.73) (0.70) (0.70) (0.70) (0.71) (0.72) (0.65) (0.92) (11)

T.Mean 0.85 0.73 0.71 0.75 0.73 0.74 0.74 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.80) (0.71) (0.67) (0.74) (0.74) (0.72) (0.69) (0.68) (0.69) (0.72) (0.72) (0.64) (0.90) (12)

Median 0.85 0.73 0.71 0.75 0.73 0.74 0.74 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.80) (0.70) (0.67) (0.74) (0.75) (0.72) (0.69) (0.68) (0.69) (0.72) (0.73) (0.65) (0.90) (12)

RF/OLS 0.81 0.72 0.71 0.75 0.74 0.75 0.75 0.73 0.73 0.77 0.78 0.70 0.92 13
(0.78) (0.70) (0.67) (0.75) (0.76) (0.74) (0.70) (0.69) (0.70) (0.73) (0.76) (0.68) (0.91) (12)

adaLASSO/RF 0.87 0.75 0.69 0.72 0.74 0.71 0.72 0.70 0.71 0.77 0.80 0.70 0.77 13
(0.81) (0.70) (0.66) (0.73) (0.74) (0.71) (0.68) (0.65) (0.67) (0.73) (0.75) (0.66) (0.77) (13)

RMSE count 11 17 15 19 18 18 18 17 19 19 20 19 17
MAE count (13) (15) (16) (16) (16) (16) (15) (11) (12) (16) (13) (12) (6)
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Figure 7. Variable importance
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Appendix A. Variable Description

In this section, we present a description of the dataset used in this paper. Tables 13–20

describe the data and the transformations that were applied to each variable. Each table

considers one of the eight different sectors in which the variables are grouped. The column

tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); and (7) ∆(xt/xt−1 − 1). The

FRED column gives mnemonics in FRED followed by a short description. The comparable

series in global insight is given in the column GS.

Table 13. Data Description: Output and Income

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 1: Output and income

id tcode fred description gsi gsi:description

1 1 5 RPI Real Personal Income M 14386177 PI

2 2 5 W875RX1 Real personal income ex transfer receipts M 145256755 PI less transfers

3 6 5 INDPRO IP Index M 116460980 IP: total

4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M 116460981 IP: products

5 8 5 IPFINAL IP: Final Products (Market Group) M 116461268 IP: final prod

6 9 5 IPCONGD IP: Consumer Goods M 116460982 IP: cons gds

7 10 5 IPDCONGD IP: Durable Consumer Goods M 116460983 IP: cons dble

8 11 5 IPNCONGD IP: Nondurable Consumer Goods M 116460988 IP: cons nondble

9 12 5 IPBUSEQ IP: Business Equipment M 116460995 IP: bus eqpt

10 13 5 IPMAT IP: Materials M 116461002 IP: matls

11 14 5 IPDMAT IP: Durable Materials M 116461004 IP: dble matls

12 15 5 IPNMAT IP: Nondurable Materials M 116461008 IP: nondble matls

13 16 5 IPMANSICS IP: Manufacturing (SIC) M 116461013 IP: mfg

14 17 5 IPB51222s IP: Residential Utilities M 116461276 IP: res util

15 18 5 IPFUELS IP: Fuels M 116461275 IP: fuels

16 19 1 NAPMPI ISM Manufacturing: Production Index M 110157212 NAPM prodn

17 20 2 CUMFNS Capacity Utilization: Manufacturing M 116461602 Cap uti
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Table 14. Data Description: Labor Market

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 2: Labor market

id tcode fred description gsi gsi:description

1 21* 2 HWI Help-Wanted Index for United States Help wanted indx

2 22* 2 HWIURATIO Ratio of Help Wanted/No. Unemployed M 110156531 Help wanted/unemp

3 23 5 CLF16OV Civilian Labor Force M 110156467 Emp CPS total

4 24 5 CE16OV Civilian Employment M 110156498 Emp CPS nonag

5 25 2 UNRATE Civilian Unemployment Rate M 110156541 U: all

6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks) M 110156528 U: mean duration

7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M 110156527 U ¡ 5 wks

8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M 110156523 U 5-14 wks

9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over M 110156524 U 15+ wks

10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M 110156525 U 15-26 wks

11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over M 110156526 U 27+ wks

12 32* 5 CLAIMSx Initial Claims M 15186204 UI claims

13 33 5 PAYEMS All Employees: Total nonfarm M 123109146 Emp: total

14 34 5 USGOOD All Employees: Goods-Producing Industries M 123109172 Emp: gds prod

15 35 5 CES1021000001 All Employees: Mining and Logging: Mining M 123109244 Emp: mining

16 36 5 USCONS All Employees: Construction M 123109331 Emp: const

17 37 5 MANEMP All Employees: Manufacturing M 123109542 Emp: mfg

18 38 5 DMANEMP All Employees: Durable goods M 123109573 Emp: dble gds

19 39 5 NDMANEMP All Employees: Nondurable goods M 123110741 Emp: nondbles

20 40 5 SRVPRD All Employees: Service-Providing Industries M 123109193 Emp: services

21 41 5 USTPU All Employees: Trade, Transportation & Utilities M 123111543 Emp: TTU

22 42 5 USWTRADE All Employees: Wholesale Trade M 123111563 Emp: wholesale

23 43 5 USTRADE All Employees: Retail Trade M 123111867 Emp: retail

24 44 5 USFIRE All Employees: Financial Activities M 123112777 Emp: FIRE

25 45 5 USGOVT All Employees: Government M 123114411 Emp: Govt

26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M 140687274 Avg hrs

27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M 123109554 Overtime: mfg

28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M 14386098 Avg hrs: mfg

29 49 1 NAPMEI ISM Manufacturing: Employment Index M 110157206 NAPM empl

30 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M 123109182 AHE: goods

31 128 6 CES2000000008 Avg Hourly Earnings : Construction M 123109341 AHE: const

32 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M 123109552 AHE: mfg
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Table 15. Data Description: Housing

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 3: Housing

id tcode fred description gsi gsi:description

1 50 4 HOUST Housing Starts: Total New Privately Owned M 110155536 Starts: nonfarm

2 51 4 HOUSTNE Housing Starts, Northeast M 110155538 Starts: NE

3 52 4 HOUSTMW Housing Starts, Midwest M 110155537 Starts: MW

4 53 4 HOUSTS Housing Starts, South M 110155543 Starts: South

5 54 4 HOUSTW Housing Starts, West M 110155544 Starts: West

6 55 4 PERMIT New Private Housing Permits (SAAR) M 110155532 BP: total

7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M 110155531 BP: NE

8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M 110155530 BP: MW

9 58 4 PERMITS New Private Housing Permits, South (SAAR) M 110155533 BP: South

10 59 4 PERMITW New Private Housing Permits, West (SAAR) M 110155534 BP: West

Table 16. Data Description: Consumption, Orders and Inventories

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 4: Consumption, orders, and inventories

id tcode fred description gsi gsi:description

1 3 5 DPCERA3M086SBEA Real personal consumption expenditures M 123008274 Real Consumption

2 4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales M 110156998 M&T sales

3 5* 5 RETAILx Retail and Food Services Sales M 130439509 Retail sales

4 60 1 NAPM ISM : PMI Composite Index M 110157208 PMI

5 61 1 NAPMNOI ISM : New Orders Index M 110157210 NAPM new ordrs

6 62 1 NAPMSDI ISM : Supplier Deliveries Index M 110157205 NAPM vendor del

7 63 1 NAPMII ISM : Inventories Index M 110157211 NAPM Invent

8 64 5 ACOGNO New Orders for Consumer Goods M 14385863 Orders: cons gds

9 65* 5 AMDMNOx New Orders for Durable Goods M 14386110 Orders: dble gds

10 66* 5 ANDENOx New Orders for Nondefense Capital Goods M 178554409 Orders: cap gds

11 67* 5 AMDMUOx Unfilled Orders for Durable Goods M 14385946 Unf orders: dble

12 68* 5 BUSINVx Total Business Inventories M 15192014 M&T invent

13 69* 2 ISRATIOx Total Business: Inventories to Sales Ratio M 15191529 M&T invent/sales

14 130* 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect
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Table 17. Data Description: Money and Credit

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 5: Money and credit

id tcode fred description gsi gsi:description

1 70 6 M1SL M1 Money Stock M 110154984 M1

2 71 6 M2SL M2 Money Stock M 110154985 M2

3 72 5 M2REAL Real M2 Money Stock M 110154985 M2 (real)

4 73 6 AMBSL St. Louis Adjusted Monetary Base M 110154995 MB

5 74 6 TOTRESNS Total Reserves of Depository Institutions M 110155011 Reserves tot

6 75 7 NONBORRES Reserves Of Depository Institutions M 110155009 Reserves nonbor

7 76 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&I loan plus

8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans

9 78 6 NONREVSL Total Nonrevolving Credit M 110154564 Cons credit

10 79* 2 CONSPI Nonrevolving consumer credit to Personal Income M 110154569 Inst cred/PI

11 131 6 MZMSL MZM Money Stock N.A. N.A.

12 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.

13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.

14 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.
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Table 18. Data Description: Interest and Exchange Rates

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 6: Interest and exchange rates

id tcode fred description gsi gsi:description

1 84 2 FEDFUNDS Effective Federal Funds Rate M 110155157 Fed Funds

2 85* 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper

3 86 2 TB3MS 3-Month Treasury Bill: M 110155165 3 mo T-bill

4 87 2 TB6MS 6-Month Treasury Bill: M 110155166 6 mo T-bill

5 88 2 GS1 1-Year Treasury Rate M 110155168 1 yr T-bond

6 89 2 GS5 5-Year Treasury Rate M 110155174 5 yr T-bond

7 90 2 GS10 10-Year Treasury Rate M 110155169 10 yr T-bond

8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond

9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond

10 93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread

11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread

12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread

13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread

14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread

15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread

16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread

17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread

18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg

19 102 * 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M 110154768 Ex rate: Switz

20 103 * 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M 110154755 Ex rate: Japan

21 104 * 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate M 110154772 Ex rate: UK

22 105 * 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M 110154744 Ex rate: Canada
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Table 19. Data Description: Prices

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 7: Prices

id tcode fred description gsi gsi:description

1 106 6 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds

2 107 6 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds

3 108 6 WPSID61 PPI: Intermediate Materials M 110157527 PPI: int matls

4 109 6 WPSID62 PPI: Crude Materials M 110157500 PPI: crude matls

5 110* 6 OILPRICEx Crude Oil, spliced WTI and Cushing M 110157273 Spot market price

6 111 6 PPICMM PPI: Metals and metal products M 110157335 PPI: nonferrous

7 112 1 NAPMPRI ISM Manufacturing: Prices Index M 110157204 NAPM com price

8 113 6 CPIAUCSL CPI : All Items M 110157323 CPI-U: all

9 114 6 CPIAPPSL CPI : Apparel M 110157299 CPI-U: apparel

10 115 6 CPITRNSL CPI : Transportation M 110157302 CPI-U: transp

11 116 6 CPIMEDSL CPI : Medical Care M 110157304 CPI-U: medical

12 117 6 CUSR0000SAC CPI : Commodities M 110157314 CPI-U: comm.

13 118 6 CUUR0000SAD CPI : Durables M 110157315 CPI-U: dbles

14 119 6 CUSR0000SAS CPI : Services M 110157325 CPI-U: services

15 120 6 CPIULFSL CPI : All Items Less Food M 110157328 CPI-U: ex food

16 121 6 CUUR0000SA0L2 CPI : All items less shelter M 110157329 CPI-U: ex shelter

17 122 6 CUSR0000SA0L5 CPI : All items less medical care M 110157330 CPI-U: ex med

18 123 6 PCEPI Personal Cons. Expend.: Chain Index gmdc PCE defl

19 124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods gmdcd PCE defl: dlbes

20 125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble

21 126 6 DSERRG3M086SBEA Personal Cons. Exp: Services gmdcs PCE defl: service

Table 20. Data Description: Stock Market

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)

∆xt; (3) 2∆2xt; (4) log(xt); (5) ∆ log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1). The FRED column gives

mnemonics in FRED followed by a short description. The comparable series in Global Insight is given in

the column GS.
Group 8: Stock Market

id tcode fred description gsi gsi:description

1 80* 5 S&P 500 S&P’s Common Stock Price Index: Composite M 110155044 S&P 500

2 81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials M 110155047 S&P: indust

3 82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield

4 83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio

5 135* 1 VXOCLSx VXO
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Appendix B. Models

For all models, with the exception of the RW and UCSV specifications, we include a

dummy for the November 2008, when a huge deflation was observed.

B.1. Benchmark Models. The first benchmark is the RW model, where for h = 1, . . . , 12,

the forecasts are computed as follows:

π̂t+h|t = πt. (3)

For the accumulated twelve-month forecast, we consider the following equation:

π̂t+1:t+12|t = πt−11:t, (4)

where πt−11:t is the accumulated inflation over the previous twelve months.

The second benchmark is the autoregressive (AR) model of order p, where p is deter-

mined by the Bayesian information criterion (BIC) and the parameters are estimated by

OLS. The forecast equation is

π̂t+h|t = φ̂0,h + φ̂1,hπt + . . .+ φ̂p,hπt−p+1. (5)

There is a different model for each horizon. The accumulated forecasts are computed by

aggregating the individual forecasts.

Finally, the third benchmark is the UCSV model, which is described as follows:

πt =τt + eht/2εt,

τt =τt−1 + ut,

ht =ht−1 + vt,

(6)

where {εt} is a sequence of independent and normally distributed random variables with

zero mean and unit variance and εt ∼ N(0, 1), ut and vt are also normal with zero mean

and variance given by inverse-gamma priors. τ1 ∼ N(0, Vτ ) and h1 ∼ N(0, Vh), where

Vτ = Vh = 0.12. The model is estimated by Markov chain Monte Carlo (MCMC) methods.

The h-steps-ahead forecast is computed as π̂t+h = τ̂t|t.

For accumulated forecasts, the UCSV is estimated with the twelve-month inflation as

the dependent variable.

B.2. Shrinkage. In this paper, we estimate several shrinkage estimators for linear models

where Th(xt) = β′hxt and

β̂h = arg min
β

[
T−h∑
t=1

(πt+h − β′xt)
2

+ λ

n∑
i=1

p(βi;ωi, α)

]
, (7)
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where p(βi;ωi, α) is a penalty function that depends on the penalty parameter λ and on a

weight ωi > 0. We consider different choices for the penalty functions as described below.

B.2.1. Ridge Regression (RR):. RR shrinkage was proposed by Hoerl & Kennard (1970b,a)

and consists of the following penalty function:

λ

n∑
i=1

p(βi;ωi, α) := λ

n∑
i=1

β2
i . (8)

RR has the advantage of having an analytical solution that is easy to compute and

shrinks the irrelevant variables to zero. However, given the geometry of the penalty, the

coefficients rarely reach exactly zero for any size of λ. Therefore, RR is not an sparsity-

inducing method.

One interesting fact about RR is its relation to principal component (factor) models.

LetX be the centered T×n predictor matrix and consider its singular value decomposition

X = USV ′ with S being a diagonal matrix with diagonal elements si, i = 1, . . . , n.

The RR estimates of inflation are given by

πridge = Xβ̂ridge = X(X ′X + λI)−1X ′y = Udiag

(
s2i

s2i + λ

)
U ′y,

whereas for the factor model with k factors are given by

πPC = XPCβ̂PC = Udiag(1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0︸ ︷︷ ︸
n−k zeroes

)U ′y.

However, this parallel to factor models does not hold exactly in our implementation

as the variable set for the RR is larger that the one for the principal component factor

construction as it includes four lags of each variable, autoregressive terms and the factors

as well. Nevertheless, the comparison is useful to understand the potential differences in

performance between RR and factor alternatives.

B.2.2. Least Absolute Shrinkage and Selection Operator (LASSO):. LASSO was originally

proposed by Tibshirani (1996). LASSO is similar to RR but penalizes the `1 norm of the

coefficients as follows:

λ

n∑
i=1

p(βi;ωi, α) := λ

n∑
i=1

|βi|. (9)

LASSO shrinks the irrelevant variables to zero and has some good properties both in

variable selection and goodness of fit. In order to achieve consistent variable selection,

LASSO requires the irrepresentable condition9 (IRC) to be satisfied (Zhao & Yu 2006).

9The irrepresentable condition imposes some restrictions on the correlation structure between the relevant
and the irrelevant variables. In other words, the correlation between the two groups is bounded and must
be small.
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However, even if the IRC is not satisfied, LASSO still has the variable screening property,

i.e., LASSO selects the relevant variables with high probability, but it may also select

some extra variables.

B.2.3. Adaptive LASSO (adaLASSO):. adaLASSO was proposed by Zou (2006), who

showed that the inclusion of some additional information regarding the importance of

each variable could considerably improve the results. The adaLASSO does not need the

IRC to have variable selection consistency and also has oracle properties, i.e., it not only

selects the correct set of variables with high probability, but the coefficient distribution

of these variables is also the same as the OLS estimation using only the correct set of

variables. adaLASSO uses the same penalty as LASSO with the inclusion of a weighting

parameter that comes from a first-step model that can be LASSO or even OLS:

λ
n∑
i=1

p(βi;ωi, α) := λ
n∑
i=1

ωi|βi|, (10)

where ωi = |β∗i |−1 and β∗i are the coefficients from the first-step model. Finally, LASSO

has some good properties for high-dimensional data. LASSO can handle many more

variables than observations and works well in nonGaussian environments and under het-

eroskedasticity (Medeiros & Mendes 2016).

B.2.4. Elastic Net (ElNet). Elastic net (ElNet) is a generalization that includes LASSO

and RR as special cases. ElNet is a convex combination of the `1 and the `2 norms (Zou &

Hastie 2005). ElNet also does regularization and selects the most relevant variables. Since

its penalty is between that of LASSO and RR, ElNet normally selects more variables than

LASSO, at least for the same value of λ. The ElNet penalty is defined as follows:

λ
n∑
i=1

p(βi;ωi, α) := αλ
n∑
i=1

β2
i + (1− α)λ

n∑
i=1

|βi|; (11)

where α ∈ [0, 1]. We also consider an adaptive version of ElNet (adaElNet). This version

works in the same way as the adaptive LASSO, i.e., we estimate a first-step model and

use it to calculate the weights ωi.

B.3. Factor Models. Factor models using principal components are very popular ap-

proaches to avoid the curse of dimensionality when the number of predictions is potentially

large. The idea is to extract common components from all variables, thus reducing the

model dimension.

In the present paper, factors are computed as principal components of a large set of

variables zt such that F t = Azt, where A is a rotation matrix and F t is the vector

of the principal components. Consider equation (1). In this case, xt is given by πt−j,
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j = 0, 1, 2, 3 plus f t−j, j = 0, 1, 2, 3, where f t is the a vector with the first four principal

components of zt. The assumptions and the theory behind factor models and when can

we treat factors as observed variables can be found in Bai & Ng (2002, 2006, 2008).

B.3.1. Target Factors. To improve the forecasting performance of factor models, Bai &

Ng (2008) proposed targeting the predictors. The idea is that if many variables in zt

are irrelevant predictors of πt+h, factor analysis using all variables may result in noisy

factors with poor forecasting ability. The target factors are regular factor models with a

pretesting procedure to select only relevant variables to be included in the factor analysis.

Let zi,t, i = 1, . . . , q be the candidate variables and wt a set of fixed regressors that will

be used as controls in the pretesting step. We follow Bai & Ng (2008) and use wt as AR

terms of πt. The procedure is described as follows.

(1) For i = 1, . . . , q, regress πt+h on wt and zi,t and compute the t statistics for the

coefficient corresponding to zi,t.

(2) Sort all t statistics calculated in step 1 in descending order.

(3) Choose a significance level α and select all variables that are significant using the

computed t statistics.

(4) Let zt(α) be the selected variables from steps 1–3. Estimate the factors F t from

zt(α) by principal components.

(5) Regress πt+h on wt and f t−j, j = 0, 1, 2, 3, where f t ⊂ F t. The number of factors

in f t is selected using the BIC. Bai & Ng (2008) also selected the number of lagged

factors using the BIC.

The same procedure was used by Medeiros & Vasconcelos (2016). The authors showed

that in most cases, target factors slightly reduce the forecasting errors compared to factor

models without targeting.

B.3.2. Factor Boosting. The optimal selection of factors for predictive regressions is an

open problem in the literature. Even if the factor structure is clear in the data, it is not

obvious that only the most relevant factors should be included in the predictive regression.

We adopt the boosting algorithm as proposed by Bai & Ng (2008) to select the factors

and the number of lags that must be considered in the predictive regression for inflation.

Define zt ∈ Rq, the set of all n factors computed from the original n variables plus four

lags of each factor. Therefore, q = 5n.

The algorithm is defined as follows:

(1) Let Φt,0 = π̄ for each t, where π̄ = 1
t

∑t
i=1 πi.

(2) For m = 1, . . . ,M :

(a) Compute ût = πt − Φt−h,m−1.
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(b) For each candidate variable i = 1, . . . , q, regress the current residual on zi,t to

obtain b̂i and compute êt,i = ût − zi,tb̂i. Calculate SSRi = ê′iêi.

(c) Select i∗m as the index of the variable which delivers the smallest SSR and

define φ̂t,m = zi∗m,tb̂i∗m ,

(d) Update Φ̂t,m = Φ̂t,m−1 + vφt,m, where v is the step length. We set v = 0.2.

(3) Stop the algorithm after the Mth iteration or when the BIC starts to increase.

B.4. Ensemble Methods. Ensemble forecasts are constructed from a (weighted) av-

erage of the predictions of an ensemble of methods. In this section, we describe the

techniques considered in this paper.

B.4.1. Bagging. The term “bagging” comes from bootstrap aggregation, which was pro-

posed by Breiman (1996). The idea is to combine forecasts from several unstable models.

Normally, there is much more to gain from combinations of models if they are very differ-

ent. The first source of instability is generated by re-estimating the model using bootstrap

samples, and the second source comes from a pretesting step prior to the estimation, which

for each bootstrap sample selects a subset of variables based on their statistical signifi-

cance. The bagging steps are as follows:

(1) For each bootstrap sample b, run a regression with all candidate variables and

select those with |t| ≥ c, where c is a pre-defined critical value.

(2) Estimate a new regression only with the variables selected in the previous step.

(3) The coefficients from the second regression are finally used to compute the forecasts

on the actual sample.

(4) Repeat the first three steps for B bootstrap samples and compute the final forecast

as the average of the B forecasts.

We used B = 100. Note that in our case, the number of observations may be smaller

than the number of variables, which makes the regression in the first step unfeasible. We

solve this issue by introducing a new source of instability in the pretesting step. For each

bootstrap sample we randomly divide all variables in groups and run the pretesting step

for each one of the groups.

B.4.2. Complete Subset Regressions. CSR was developed by Elliott et al. (2013, 2015).

The motivation for developing CSR was that selecting the optimal subset of xt to predict

πt+h by testing all possible combinations of regressors is computationally very demanding,

and in most cases, even unfeasible. Supposing that we have n candidate variables, the

CSR selects a number q ≤ n and computes all combinations of regressions using only q

variables. The forecast of the model will be the average forecast of all regressions in the

subset.
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CSR deals well with a small number of candidate variables. However, for large sets, the

number of regressions to be estimated increases very fast. For example, with n = 25 and

q = 4, we need to estimate 12, 650 regressions. As the number of candidate variables is

much larger, we adopt a pretesting procedure similar to that used with the target factors.

We start fitting a linear regression of πt+h on each of the candidate variables (including

lags) and save the t-statistics of each variable10. The t-statistics are ranked by absolute

value, and we select the ñ variables that are more relevant in the ranking. The CSR

forecast is calculated on these variables. We used ñ = 25 and q = 4.

B.4.3. Jackknife Model Averaging. JMA is a different way to combine forecasts from sev-

eral small models. Instead of using the naive average of the forecasts, JMA uses leave-

one-out cross-validation to estimate optimal weights. The procedure we followed is that

of Hansen & Racine (2012) with some adjustments for time series as discussed in Zhang

et al. (2013).

Suppose we have M candidate models that we want to average from and write the

forecast of each model as π̂
(m)
t+h, m = 1, . . . ,M . Set the final forecast as

π̂t+h =
M∑
m=1

ωmπ̂
(m)
t+h,

where 0 ≤ ωm ≤ 1 for all m ∈ {1, . . . ,M} and
∑M

m=1 ωm = 1.

The JMA procedure is as follows:

(1) For each observation of (xt, πt+h):

(a) Estimate all the candidate models leaving the selected observation out of the

estimation. Since we are in a time series framework with lags in the model, we

also removed four observations before and four observations after (xt, πt+h).

(b) Compute the forecasts from each model for the observations that were re-

moved in the previous step.

(2) Choose the weights that minimize the cross-validation errors subject to the con-

straints previously described.

The minimization problem above is quadratic and has the restriction that w must be

positive and sum to 1. The problem does not have a closed solution but can be easily

solved using the quadprog package (Berwin et al. 2013) in R. Given our set of candidate

variables, each candidate model in the JMA has four autoregressive lags of the inflation

and four lags of one candidate variable.

10We did not use a fixed set of controls, wt, in the pretesting procedure like we did for the target factors.
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B.5. Regression Trees and Random Forests. The RF methodology was initially pro-

posed by Breiman (2001) as a solution to reducing the variance of regression trees and

is based on bootstrap aggregation (bagging) of randomly constructed regression trees. In

turn, regression trees are flexible nonparametric predictive models that recursively par-

tition the set of explanatory variables, X, into subsets, each modeled using regression

methods; see Breiman (1996).

To understand how a regression tree works, an example from Hastie et al. (2001) is

useful. Consider a regression problem in which X1 and X2 are explanatory variables, each

taking values in some given interval, and Y is the dependent variable. We first split the

space into two regions, at X1 = s1, and then, the region to the left (right) of X1 = s1 is

split at X2 = s2 (X1 = s3). Finally, the region to the right of X1 = s3 is split at X2 = s4.

As illustrated in the right plot of Figure 8, the end result is a partitioning of X into

five regions: Rm, m = 1, . . . , 5. In each region Rm, we assume that the model predicts

Y with a constant cm, which could be estimated, for example, as the sample average of

realizations of Y that “fall” within region Rm. A key advantage of this recursive binary

partition is that it can be represented as a single tree, as illustrated in the left plot of

Figure 8. Each region corresponds to a terminal node of the tree.

Figure 8. Example of a regression tree. Reproduction of part of Figure
9.2 in Hastie et al. (2001).

Now we turn to the question as to how to choose splitting variables and split points, i.e.,

how to grow a tree, when there are p explanatory variables. Let xt = (x1,t, x2,t, . . . , xp,t),

for t = 1, . . . , T , where xi,t is the realization of variable Xi in period t.
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We proceed backwards. Suppose that after choosing the splitting variables and split

points, we reach M regions. If we adopt the sum of squared errors as our minimization

criterion, the prediction of Y at T , ĉm, is simply the average of previous realizations yt

such that xt belongs to Rm. Algebraically, for m = 1, ...,M ,

ĉm = arg min
T∑
t=1

I(xt ∈ Rm)(yt − cm)2 =

∑T
t=1 I(xt ∈ Rm)yt∑T
i=1 I(xt ∈ Rm)

, (12)

where I is the indicator function.

The idea is to use the sum of squared errors to inform how to grow the regression tree.

To begin, consider a splitting variable j and a split point s to partition X into two regions,

namely, R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}. Then, seek the pair (j, s)

that solves

min
j,s

[
min
c1

T∑
t=1

I(xt ∈ R1(j, s))(yt − c1)2 + min
c2

T∑
t=1

I(xt ∈ R2(j, s))(yt − c2)2
]
.

Once the best split is found, we proceed iteratively, repeating this process on each of the

resulting regions.

A natural question arises: when should we stop this process? A very large tree might

overfit the data, which would be highly unstable. However, a tree that is too small might

not capture a complex nonlinear relation between variables in the data. One possibility

to address this trade-off is the cost-complexity pruning method described in Hastie et al

(2009). Instead, we follow the RF method, which applies the essential idea of bagging,

i.e., RF reduces the variance by averaging many noisy and unbiased models to (very large)

regression trees. The drawback is the loss of interpretability.

An RF is a collection of regression trees, each specified in a bootstrapped subsample

of the original data. Suppose there are B bootstrapped subsamples. For each subsample,

obtain a prediction for Y by applying a modified version of the aforementioned splitting

iterative process until a prespecified minimum number of observations, say five, is reached

in any resulting region. In particular, the modification is to select q variables at random

from the p explanatory variables at each step of the process. Finally, simply average the

predictions of Y across the B bootstrapped subsamples. Since we are dealing with time

series, bootstrapped samples are calculated using block bootstrapping.

The main advantages of the RF method are twofold: RF can handle both a very large

number of explanatory variables and complex nonlinear relationships between variables.

B.6. Hybrid Linear-Random Forests Models. RF/OLS and adaLASSO/RF deserve

some special attention because these are adaptations made specifically to answer how
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important the variable selection is and the nonlinearity in forecasting the US inflation.

RF/OLS is estimated using the following steps:

(1) For each bootstrap sample b:

(a) Grow a single tree with k nodes (we used k = 20) and save the N ≤ k split

variables,

(b) Run an OLS on the selected splitting variables,

(c) Compute the forecast ŷbt+h.

(2) The final forecast will be ŷt+h = B−1
∑B

b=1 ŷ
b
t+h where B is the number of bootstrap

samples.

The main objective of the RF/OLS is to check the performance of a linear model

using variables selected from the RV. If the results are very close to the full RF, we

understand that nonlinearity is not an issue, and the RF is superior solely because of

variable selection. However, if we see some improvement compared to other linear models,

especially bagging11, but if RF/OLS is still less accurate than RF, we have evidence that

both nonlinearity and variables selection play an important role.

The second adapted model is LASSO/RF, where we use the adaptive LASSO for vari-

able selection and then estimate a fully grown RF with the variables selected by adaptive

LASSO. If LASSO/RF performs similarly to RF, we understand that the variable selec-

tion in RF is irrelevant, and the only thing that matters is the nonlinearity. LASSO/RF

and RF/OLS together create an ”if and only if” situation where we test the importance of

variable selection and nonlinearity from both sides. Our results point to the middle case

where nonlinearity and variable selection are both important. The two adapted models

perform very well compared to other linear specifications, but RF is more accurate than

both. In other words, the good performance of RF is driven by both variable selection

and nonlinearity.

11Bagging and RF are bootstrap-based models, the first of which is linear and the second is nonlinear.
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Appendix C. Additional Results

C.1. Variable Selection: Word Clouds. This Appendix presents the variable selection

for several models as word clouds. In the present context, a word cloud is an image

composed of the names of variables selected by a specific model across the estimation

windows in which the size of each word indicates its frequency or importance. The names

displayed in the clouds are as defined in the third column of Tables 13–20. These names

represent FRED mnemonics. The clouds also indicate the degree of sparsity of each

model. For instance, the smaller the cloud is, the more sparse the model is.

Figures 9 and 10 display the word clouds for the linear model estimated with the

adaLASSO method for the first and second subsamples, respectively. In each figure,

panel (a) shows the cloud for one-month-ahead models (h = 1), panel (b) presents the

results for the three-month horizon (h = 3), and panels (c) and (d) consider the cases

for h = 6 and h = 12, respectively. A number of findings emerge from the word clouds.

First, as expected, the adaLASSO method delivers very sparse methods, and this did not

change much according to the subsample considered. Second, the models across different

horizons, as shown before, are quite different. For example, in the first subsample and for

h = 1, the three variables that stand out from the cloud are CUSR0000SAOL5 (CPI: all

items less medical care), WPSFD49207 (PPI: finished goods), and DSERRG3M086SBEA

(PCE: Services). However, for h = 12, the most important variables are AMDMUOx

(unfilled orders for durable goods) and HOUSTMW (Housing starts, Midwest). Finally,

the pool of selected variables also changes from the first to the second sample, specially

for h = 1. In this case, oil prices turn out to be one of the most relevant variables.

Figures 11 and 12 shows the word clouds for the RF model. From the pictures it is

clear that the number of important variables are much higher. As in the adaLASSO case,

the variable composition changes from the first to the second subsample.

C.2. Additional Results: Personal Consumption Expenditure (PCE). In this

section, we report forecasting results for PCE. The main message is similar to the one

described in the main text: RF models outperform traditional benchmarks as well as

other linear ML methods.

In Tables 21–23, we report for each model a number of different summary statistics

across all the forecasting horizons, including the accumulated twelve-month horizon for

the full out-of-sample period (1990–2015) as well as for the two subsamples considered,

namely, 1990–2000 and 2001–2015. Columns (1), (2) and (3) report the RMSE, the MAE

and the MAD, respectively. In columns (4), (5) and (6) we report the number of times

(across horizons) each model achieved the lowest RMSE, MAE, and MAD, respectively.

Columns (7)–(10) present, for square and absolute losses, the average p-values based either
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Figure 9. Word clouds for the adaLASSO method (1990–2000).
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on the range or the tmax statistics as described in Hansen et al. (2011). Columns (11)

and (12) show the average p-values of the SPA test proposed by Hansen (2005). Finally,

columns (13) and (14) display the p-value of the multi-horizon test for superior predictive

ability proposed by Quaedvlieg (2017). The superiority of the RF models is clear from

the tables.

Tables 24–26 show the RMSE and, in parenthesis, the MAE for all models relative to

the RW. The error measures were calculated from 132 rolling windows covering the 1990-

2015 period and 180 rolling windows covering the 2001-2015 period. Values in bold show

the most accurate model in each horizon. Cells in gray (blue) show the models included

in the 50% MCS using the squared error (absolute error) as loss function. The MCSs
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Figure 10. Word clouds for the adaLASSO method (2001–2015).
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(d) h=12

were constructed based on the maximum t statistic. The last column in the table reports

in how many horizons the row model was included in the MCS for square (absolute) loss.

The last two rows in the table report how many models were included in the MCS for

square and absolute losses. Again, the performance of the RF model is remarkable.
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Figure 11. Word clouds for the Random Forest model (1990-2000).
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Figure 12. Word clouds for the Random Forest model (2001—2015).

AAAFFM
CPI

D
S

E
R

R
G

3M

PCE

OILPRICE

CUSR0000

CUSR0000

T10YFFM

CPIULFSL

BAAFFM

WPSFD492
DDURRG3M

WPSFD495

f1

CPIMEDSL

CUSR0000
T5YFFM

WPSID61

AWHMAN

CES30000

AMDMUOx
TB6SMFFM

CES06000

DNDGRG3M

PERMITMW

COMPAPFF

CES06000

BUSINVx

CUUR0000

CUUR0000
HOUSTS

PERMIT

TB3SMFFM
CES10210

f4

CPITRNSL

HOUSTMW

PERMITS

CP3Mx

HOUST

REALLN

HOUSTNE

T1YFFM

NONREVSL

FEDFUNDS

HOUSTW

PERMITNE

PERMITW

B
U

S
LO

A
N

S

M2REAL

TB3MS

NDMANEMP

USFIRE

WPSID62

TOTRESNS

M2SL CONSPI USWTRADE

GS1

DTCTHFNM

TB6MS

EXJPUSx

SRVPRD

MANEMP

CES20000

USTPU

USTRADE

DMANEMP

EXSZUSx

MZMSL

PAYEMS

AMBSL

USGOOD

M1SL

BAA
G

S
10

IPBUSEQ

R
P

I

IPNMAT

f3

W
87

5R
X

1
DTCOLNVH

f2

AAA

UNRATE

S.P.div.

INDPRO PPICMM

GS5

IPMANSIC

CLAIMSx

USCONS

CUMFNS

USGOVT

IS
R

AT
IO

x

CMRMTSPL

AMDMNOx

CE16OV

IPFPNSS

IPMAT

IP
B

51
22

2

IPFUELS

UEMPLT5

CPIAPPSL

IPDMAT

CLF16OV

HWIURATI

EXCAUSx

DPCERA3M

UEMP27OV

IPDCONGD

U
E

M
P

15
O

V E
X

U
S

U
K

x

S.P.PE.r

INVEST

IPFINAL

IPCONGD

HWI

(a) h=1

D
S

E
R

R
G

3M

PCE
AAAFFM

BAAFFM
CUSR0000

WPSID61
CES06000

AMDMUOx

CES30000 HOUSTS
CPI

T10YFFM DDURRG3M

CPIMEDSL

T5YFFM

CPIULFSL CUSR0000

f1WPSFD492

T1YFFM

TB3SMFFM

TB6SMFFM

BUSINVx

NONREVSL
COMPAPFF

REALLN

CUUR0000

HOUST

CES10210
TB3MS

HOUSTMW
HOUSTW

P
E

R
M

IT
W

WPSFD495
CES06000

P
E

R
M

IT
M

W

USFIRE
IPMANSIC

PERMITS

TB6MS

AWHMAN

IPFUELS

CUSR0000

D
N

D
G

R
G

3M

M2SL

PERMITNE

f4

USWTRADE

HOUSTNE

CUMFNSN
D

M
A

N
E

M
P

AAA
USGOVT

C
P

3M
x

PERMIT

DTCTHFNM

M1SL

CES20000

USTPU

WPSID62

USTRADE

MANEMP

CPITRNSL

GS1CPIAPPSL

CUUR0000

f2

DMANEMP

M2REAL

IN
D

P
R

O

S.P.div.

PAYEMS

F
E

D
F

U
N

D
S

GS10

GS5

W875RX1

SRVPRD

PPICMM

IPDMATCONSPI

IPBUSEQ

EXJPUSx

IPDCONGD

R
P

I

f3

DTCOLNVH

BAA

AMBSL

IPCONGD

IP
N

M
AT

USGOOD

CLAIMSx

IPFPNSS

BUSLOANS

S.P.PE.r

IPFINAL

AMDMNOx

USCONS

MZMSL

RETAILx

HWIURATI

EXSZUSx

EXUSUKx

IS
R

AT
IO

x

TOTRESNS

IPMAT

OILPRICE

S.P..ind

U
N

R
AT

E

H
W

I

UEMP15T2

UEMP27OV

UEMP15OV

CE16OV

S
.P

.5
00

DPCERA3M

CMRMTSPL

IPNCONGD

CLF16OV

INVEST

EXCAUSx

(b) h=3

PCE
DSERRG3M

BAAFFM

HOUSTMW

CPI BUSINVx

DDURRG3M

CUSR0000

AAAFFM

CES06000

AMDMUOx WPSID61
CUSR0000

HOUST
f1

T5YFFM
T1YFFM

HOUSTS

PERMITSREALLN

CUUR0000

CPIULFSL

T10YFFM

PERMITMW

CUSR0000

CES30000

PERMITW

CPIMEDSL

PERMIT

WPSFD492

TB3SMFFM

U
S

F
IR

E

HOUSTW

DNDGRG3M

CES10210

CES06000 TB6SMFFM
HOUSTNE

USTRADE

AWHMAN

DMANEMP
WPSFD495

PERMITNE

f4

MANEMP

GS1

DTCTHFNM

BUSLOANS

CPIAPPSL

M
2S

L

CP3Mx

S.P.div.

COMPAPFF

NDMANEMP

USWTRADE

FEDFUNDS

CONSPI

C
U

U
R

00
00

NONREVSL
M2REAL

IPMAT

USGOOD

f3

GS5
TB3MS

CPITRNSL

PAYEMS

IPNMAT

USTPU

MZMSL

IPMANSIC

OILPRICE

S
.P

.P
E

.r

SRVPRD

T
B

6M
S

CUMFNS

BAA

AAA

EXSZUSx

INDPRO

EXUSUKx

IPDMAT

INVEST

USGOVT

CES20000

IPBUSEQ

f2

D
T

C
O

LN
V

H

PPICMM

M1SL

GS10

S.P..ind

IPDCONGD

IPFINAL

S.P.500

USCONS

DPCERA3M

IPFPNSS

UEMP15OV

WPSID62

C
E

16
O

V

UEMP27OV

IPCONGD

IPFUELS
CLAIMSx

EXCAUSx

RETAILx

EXJPUSx

CLF16OV

UEMPMEAN

ISRATIOx

CMRMTSPL

AMBSL

W875RX1

UNRATE

AMDMNOx

(c) h=6

H
O

U
S

T
M

W
PCE

REALLN BAAFFM
CPIMEDSL CUSR0000

HOUST
DSERRG3M AAAFFM

CES06000PERMITW

HOUSTNE CPI

HOUSTWAMDMUOx

C
U

S
R

00
00

WPSFD492
NONREVSL

PERMITMW

DDURRG3M

f1
WPSID61

DTCTHFNM
BUSINVx

WPSFD495

USWTRADE

PERMITNE

CES30000

PERMIT

CPIULFSL

T10YFFM

CUSR0000

DNDGRG3M

T5YFFM

PERMITS
DMANEMP

USTPU

TB3SMFFM
NDMANEMP

M2SL

HOUSTS

MANEMP

U
S

F
IR

E
TB6SMFFM

CES06000

T1YFFM

CUUR0000

PAYEMS

SRVPRD

M2REAL

USTRADE

f4

COMPAPFF

AWHMAN

CES10210

CUUR0000

MZMSL

USGOOD

DTCOLNVH

CPITRNSL

f2

CPIAPPSL

UEMP15OV

USCONS

CONSPI

M1SL

IPBUSEQ

BUSLOANS

CUMFNS

T
B

3M
S

BAA

P
P

IC
M

M

INDPRO

OILPRICE

IPMANSICFEDFUNDS

CP3Mx

CE16OV

H
W

IU
R

AT
I

UEMP27OV

f3IPDMAT

EXSZUSx

WPSID62
EXJPUSx

IPMAT

INVEST

USGOVT

EXUSUKx IPNMAT

S.P.div.

AAA

T
B

6M
S

IPCONGD

TOTRESNS

IPFINAL

HWI

UEMP15T2

S.P.PE.r

AMBSL

W875RX1

CLF16OV
RPI

CES20000

AMDMNOx

C
LA

IM
S

x
IP

F
P

N
S

S
IPFUELS

UEMP5TO1

GS1

S.P.500

S.P..ind
IPDCONGD

CMRMTSPL
GS5

UNRATE
AWOTMAN

UEMPMEAN

GS10

(d) h=12

57



T
a
b
l
e
2
1
.

F
or

ec
as

ti
n
g

R
es

u
lt

s
P

C
E

:
S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

th
e

ou
t-

of
-s

am
p
le

p
er

io
d

fr
om

19
90

–2
01

5

T
h

e
ta

b
le

re
p

or
ts

,
fo

r
ea

ch
m

o
d

el
,

a
n
u

m
b

er
o
f

d
iff

er
en

t
su

m
m

a
ry

st
a
ti

st
ic

s
a
cr

o
ss

a
ll

th
e

fo
re

ca
st

in
g

h
o
ri

zo
n

s,
in

cl
u

d
in

g
a
s

w
el

l
th

e
a
cc

u
m

u
la

te
d

tw
el

ve
-m

on
th

h
or

iz
on

.
C

ol
u

m
n

s
(1

),
(2

)
an

d
(3

)
re

p
o
rt

th
e

av
er

a
g
e

ro
o
t

m
ea

n
sq

u
a
re

er
ro

r
(R

M
S

E
),

th
e

av
er

a
g
e

m
ea

n
a
b

so
lu

te
er

ro
r

(M
A

E
)

a
n

d

th
e

av
er

ag
e

m
ed

ia
n

ab
so

lu
te

d
ev

ia
ti

on
(M

A
D

).
C

o
lu

m
n

s
(4

),
(5

)
a
n

d
(6

)
re

p
o
rt

,
re

sp
ec

ti
ve

ly
,

th
e

n
u
m

b
er

o
f

ti
m

es
(a

cr
o
ss

h
o
ri

zo
n

s)
ea

ch
m

o
d

el

ac
h

ie
v
ed

th
e

lo
w

es
t

R
M

S
E

,
M

A
E

,
an

d
M

A
D

.
C

o
lu

m
n

s
(7

)–
(1

0
)

p
re

se
n
t,

fo
r

sq
u

a
re

a
n

d
a
b

so
lu

te
lo

ss
es

,
th

e
av

er
a
g
e
p
-v

a
lu

es
b

a
se

d
ei

th
er

o
n

th
e

ra
n
ge

or
th

e
t m

ax
st

at
is

ti
cs

as
d

es
cr

ib
ed

in
H

a
n

se
n

et
a
l.

(2
0
1
1
).

C
o
lu

m
n

s
(1

1
)

a
n

d
(1

2
)

sh
ow

th
e

av
er

a
g
e
p
-v

a
lu

es
o
f

th
e

S
u

p
er

io
r

P
re

d
ic

ti
v
e

A
b

il
it

y

(S
P

A
)

te
st

p
ro

p
os

ed
b
y

H
an

se
n

(2
00

5)
.

F
in

a
ll

y,
co

lu
m

n
s

(1
3
)

a
n

d
(1

4
)

d
is

p
la

y
th

e
p
-v

a
lu

e
o
f

th
e

m
u

lt
i-

h
o
ri

zo
n

te
st

fo
r

su
p

er
io

r
p

re
d

ic
ti

ve
a
b

il
it

y

p
ro

p
os

ed
b
y

Q
u

ae
d

v
li
eg

(2
01

7)
.

F
or

ec
as

ti
n
g

P
re

ci
si

on
M

o
d
el

C
on

fi
d
en

ce
S
et

S
u
p
.

P
re

d
.

A
b
il
it

y
M

u
lt

i-
H

or
iz

on
S
P

A
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
(1

3)
(1

4)
av

e.
av

e
av

e.
#

m
in

.
#

m
in

.
#

m
in

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
p
.v

.
p
.v

.
M

o
d
el

R
M

S
E

M
A

E
M

A
D

R
M

S
E

M
A

E
M

A
D

ra
n
ge

sq
ra

n
ge

ab
s

T
m

ax
sq

T
m

ax
ab

s
sq

ab
s

m
o
d
el

te
st

R
W

1.
00

0
1.

00
0

1.
00

0
0

0
0

0.
06

3
0.

00
2

0.
09

5
0.

01
2

0.
00

8
0.

00
0

0.
00

0
0.

00
0

A
R

0.
83

5
0.

82
5

0.
80

2
0

0
0

0.
30

5
0.

19
3

0.
48

3
0.

36
1

0.
08

2
0.

04
2

0.
00

0
0.

00
0

U
C

S
V

0.
84

8
0.

85
3

0.
87

3
0

0
0

0.
13

2
0.

07
1

0.
33

5
0.

23
2

0.
01

9
0.

01
0

0.
00

0
0.

00
0

L
A

S
S
O

0.
79

2
0.

78
7

0.
75

8
0

0
1

0.
25

4
0.

28
6

0.
60

3
0.

57
0

0.
15

3
0.

18
8

0.
62

3
0.

62
3

ad
aL

A
S
S
O

0.
80

0
0.

78
9

0.
75

9
0

0
0

0.
26

5
0.

33
7

0.
57

7
0.

50
7

0.
12

5
0.

21
2

0.
03

3
0.

03
3

E
lN

et
0.

79
1

0.
79

1
0.

75
2

0
0

1
0.

26
6

0.
26

4
0.

60
3

0.
55

4
0.

16
3

0.
17

4
0.

99
7

0.
99

7
ad

aE
ln

et
0.

80
0

0.
79

2
0.

76
1

0
0

0
0.

25
0

0.
22

6
0.

58
1

0.
48

0
0.

10
6

0.
11

8
0.

00
1

0.
00

1
R

id
ge

0.
77

6
0.

77
4

0.
78

4
0

0
1

0.
46

0
0.

51
2

0.
67

8
0.

63
2

0.
30

2
0.

40
6

0.
86

9
0.

86
9

B
V

A
R

0.
83

7
0.

85
2

0.
81

3
0

0
0

0.
24

4
0.

21
6

0.
43

2
0.

33
4

0.
06

2
0.

04
8

0.
00

0
0.

00
0

B
ag

gi
n
g

0.
81

0
0.

83
1

0.
84

7
0

0
0

0.
30

0
0.

19
4

0.
56

0
0.

39
0

0.
11

2
0.

08
5

0.
05

4
0.

05
4

C
S
R

0.
81

3
0.

79
8

0.
78

1
0

0
1

0.
36

0
0.

47
4

0.
60

2
0.

57
3

0.
20

0
0.

31
0

0.
00

0
0.

00
0

J
M

A
0.

87
0

0.
91

3
0.

95
0

0
0

0
0.

07
0

0.
01

0
0.

23
8

0.
09

2
0.

01
0

0.
00

0
0.

00
0

0.
00

0
F

ac
to

r
0.

85
7

0.
86

1
0.

82
2

0
0

1
0.

10
3

0.
01

4
0.

24
5

0.
12

8
0.

01
6

0.
00

3
0.

00
0

0.
00

0
T

.
F

ac
to

r
0.

83
4

0.
84

2
0.

84
9

0
0

0
0.

07
1

0.
05

9
0.

30
2

0.
18

3
0.

02
0

0.
03

1
0.

00
0

0.
00

0
B

o
os

ti
n
g

0.
85

9
0.

89
4

0.
92

6
0

0
0

0.
15

8
0.

07
7

0.
49

5
0.

23
0

0.
00

7
0.

00
3

0.
00

0
0.

00
0

R
F

0
.7

4
5

0
.7

3
6

0
.7

4
0

1
1

9
3

0.
58

9
0.

66
4

0
.9

6
0

0
.9

6
8

0
.9

2
8

0
.9

4
6

1
1

M
ea

n
0.

77
7

0.
76

7
0.

76
1

0
0

0
0.

54
6

0.
58

9
0.

68
2

0.
68

0
0.

39
7

0.
55

9
0.

99
5

0.
99

7
T

.M
ea

n
0.

77
8

0.
76

6
0.

75
3

0
1

1
0.

39
2

0.
55

0
0.

68
0

0.
68

4
0.

28
6

0.
58

1
0.

98
5

0.
99

7
M

ed
ia

n
0.

77
9

0.
76

6
0.

74
9

0
0

1
0.

41
7

0.
54

1
0.

68
2

0.
68

4
0.

30
8

0.
56

2
0.

96
9

0.
99

7
R

F
/O

L
S

0.
78

0
0.

77
9

0.
78

3
1

1
1

0.
49

2
0.

64
7

0.
70

2
0.

65
5

0.
44

4
0.

51
9

0.
99

3
0.

99
7

ad
aL

A
S
S
O

/R
F

0.
75

6
0.

75
0

0.
74

2
1

2
2

0
.6

5
8

0
.7

9
0

0.
74

6
0.

76
6

0.
52

8
0.

59
8

0.
90

5
0.

99
7

58



T
a
b
l
e
2
2
.

F
or

ec
as

ti
n
g

R
es

u
lt

s
P

C
E

:
S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

th
e

ou
t-

of
-s

am
p
le

p
er

io
d

fr
om

19
90

–2
00

0

T
h

e
ta

b
le

re
p

or
ts

,
fo

r
ea

ch
m

o
d

el
,

a
n
u

m
b

er
o
f

d
iff

er
en

t
su

m
m

a
ry

st
a
ti

st
ic

s
a
cr

o
ss

a
ll

th
e

fo
re

ca
st

in
g

h
o
ri

zo
n

s,
in

cl
u

d
in

g
a
s

w
el

l
th

e
a
cc

u
m

u
la

te
d

tw
el

ve
-m

on
th

h
or

iz
on

.
C

ol
u

m
n

s
(1

),
(2

)
an

d
(3

)
re

p
o
rt

th
e

av
er

a
g
e

ro
o
t

m
ea

n
sq

u
a
re

er
ro

r
(R

M
S

E
),

th
e

av
er

a
g
e

m
ea

n
a
b

so
lu

te
er

ro
r

(M
A

E
)

a
n

d

th
e

av
er

ag
e

m
ed

ia
n

ab
so

lu
te

d
ev

ia
ti

on
(M

A
D

).
C

o
lu

m
n

s
(4

),
(5

)
a
n

d
(6

)
re

p
o
rt

,
re

sp
ec

ti
ve

ly
,

th
e

n
u
m

b
er

o
f

ti
m

es
(a

cr
o
ss

h
o
ri

zo
n

s)
ea

ch
m

o
d

el

ac
h

ie
v
ed

th
e

lo
w

es
t

R
M

S
E

,
M

A
E

,
an

d
M

A
D

.
C

o
lu

m
n

s
(7

)–
(1

0
)

p
re

se
n
t,

fo
r

sq
u

a
re

a
n

d
a
b

so
lu

te
lo

ss
es

,
th

e
av

er
a
g
e
p
-v

a
lu

es
b

a
se

d
ei

th
er

o
n

th
e

ra
n
ge

or
th

e
t m

ax
st

at
is

ti
cs

as
d

es
cr

ib
ed

in
H

a
n

se
n

et
a
l.

(2
0
1
1
).

C
o
lu

m
n

s
(1

1
)

a
n

d
(1

2
)

sh
ow

th
e

av
er

a
g
e
p
-v

a
lu

es
o
f

th
e

S
u

p
er

io
r

P
re

d
ic

ti
v
e

A
b

il
it

y

(S
P

A
)

te
st

p
ro

p
os

ed
b
y

H
an

se
n

(2
00

5)
.

F
in

a
ll

y,
co

lu
m

n
s

(1
3
)

a
n

d
(1

4
)

d
is

p
la

y
th

e
p
-v

a
lu

e
o
f

th
e

m
u

lt
i-

h
o
ri

zo
n

te
st

fo
r

su
p

er
io

r
p

re
d

ic
ti

ve
a
b

il
it

y

p
ro

p
os

ed
b
y

Q
u

ae
d

v
li
eg

(2
01

7)
.

F
or

ec
as

ti
n
g

P
re

ci
si

on
M

o
d
el

C
on

fi
d
en

ce
S
et

S
u
p
.

P
re

d
.

A
b
il
it

y
M

u
lt

i-
H

or
iz

on
S
P

A
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
(1

3)
(1

4)
av

e.
av

e
av

e.
#

m
in

.
#

m
in

.
#

m
in

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
p
.v

.
p
.v

.
M

o
d
el

R
M

S
E

M
A

E
M

A
D

R
M

S
E

M
A

E
M

A
D

ra
n
ge

sq
ra

n
ge

ab
s

T
m

ax
sq

T
m

ax
ab

s
sq

ab
s

m
o
d
el

te
st

R
W

1.
00

0
1.

00
0

1.
00

0
0

0
0

0.
09

5
0.

02
8

0.
33

5
0.

34
6

0.
00

8
0.

00
3

0.
00

0
0.

00
0

A
R

0.
84

9
0.

87
1

0.
78

2
0

0
1

0.
36

6
0.

35
1

0.
71

5
0.

71
6

0.
30

2
0.

25
8

0.
19

9
0.

19
9

U
C

S
V

0.
88

2
0.

89
2

0.
90

2
0

0
0

0.
40

7
0.

49
5

0.
74

0
0.

77
3

0.
20

4
0.

37
7

0.
22

8
0.

22
8

L
A

S
S
O

0.
87

5
0.

90
8

0.
81

2
0

0
1

0.
12

2
0.

16
1

0.
53

4
0.

48
2

0.
03

2
0.

08
3

0.
00

8
0.

00
8

ad
aL

A
S
S
O

0.
85

6
0.

87
0

0.
81

8
0

0
0

0.
17

3
0.

35
0

0.
65

0
0.

73
0

0.
08

0
0.

21
1

0.
00

8
0.

00
8

E
lN

et
0.

88
7

0.
92

8
0.

80
3

1
0

1
0.

12
7

0.
11

5
0.

47
7

0.
34

5
0.

07
9

0.
08

0
0.

77
7

0.
86

3
ad

aE
ln

et
0.

86
1

0.
88

3
0.

81
7

0
0

0
0.

11
9

0.
18

3
0.

58
3

0.
58

5
0.

05
8

0.
08

6
0.

00
1

0.
00

1
R

id
ge

0.
82

8
0.

85
0

0.
82

7
0

1
0

0.
48

1
0.

52
5

0.
84

5
0.

83
2

0.
32

6
0.

37
6

0.
86

3
0.

86
3

B
V

A
R

1.
01

1
1.

07
8

0.
85

3
0

0
1

0.
26

8
0.

16
5

0.
38

3
0.

26
3

0.
05

4
0.

04
4

0.
00

5
0.

00
5

B
ag

gi
n
g

0.
89

2
0.

92
0

0.
93

6
0

0
0

0.
44

8
0.

63
4

0.
77

3
0.

75
5

0.
21

5
0.

29
3

0.
17

7
0.

17
7

C
S
R

0.
82

5
0.

84
1

0.
83

9
3

4
0

0.
58

9
0.

64
0

0.
86

3
0.

89
0

0.
52

6
0.

60
0

0.
99

3
0.

99
3

J
M

A
1.

02
5

1.
04

4
1.

05
2

0
0

0
0.

10
7

0.
13

1
0.

27
1

0.
26

8
0.

01
6

0.
02

9
0.

00
0

0.
00

0
F

ac
to

r
0.

94
9

0.
98

5
0.

86
6

0
0

2
0.

05
9

0.
06

8
0.

27
7

0.
25

2
0.

00
6

0.
01

0
0.

00
0

0.
00

0
T

.
F

ac
to

r
0.

92
9

0.
95

9
0.

87
6

0
0

1
0.

08
3

0.
10

2
0.

36
3

0.
32

5
0.

02
9

0.
07

1
0.

00
1

0.
00

1
B

o
os

ti
n
g

0.
98

7
1.

03
8

1.
06

2
0

0
0

0.
29

3
0.

27
4

0.
49

7
0.

45
2

0.
02

4
0.

04
2

0.
00

0
0.

00
0

R
F

0
.7

9
9

0
.8

1
6

0
.7

2
5

7
5

5
0.

67
6

0.
62

5
0
.9

5
3

0
.9

1
2

0
.8

8
9

0
.7

4
8

1
1

M
ea

n
0.

81
7

0.
83

4
0.

78
9

0
0

0
0.

65
8

0.
66

8
0.

86
3

0.
88

2
0.

63
8

0.
64

2
0.

96
1

0.
99

3
T

.M
ea

n
0.

82
7

0.
84

3
0.

78
8

0
0

0
0.

30
3

0.
38

0
0.

83
6

0.
87

6
0.

25
0

0.
28

4
0.

06
7

0.
06

7
M

ed
ia

n
0.

82
9

0.
84

6
0.

78
8

0
0

0
0.

34
2

0.
40

5
0.

81
5

0.
84

8
0.

26
6

0.
31

1
0.

15
0

0.
15

0
R

F
/O

L
S

0.
81

5
0.

83
7

0.
84

5
2

3
0

0
.7

9
4

0
.7

4
2

0.
88

8
0.

91
0

0.
79

4
0.

75
0

0.
94

3
0.

99
3

ad
aL

A
S
S
O

/R
F

0.
83

5
0.

85
2

0.
79

0
0

0
1

0.
45

3
0.

45
7

0.
75

4
0.

73
6

0.
37

3
0.

36
2

0.
79

5
0.

86
3

59



T
a
b
l
e
2
3
.

F
or

ec
as

ti
n
g

R
es

u
lt

s
P

C
E

:
S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

th
e

ou
t-

of
-s

am
p
le

p
er

io
d

fr
om

20
01

–2
01

5

T
h

e
ta

b
le

re
p

or
ts

,
fo

r
ea

ch
m

o
d

el
,

a
n
u

m
b

er
o
f

d
iff

er
en

t
su

m
m

a
ry

st
a
ti

st
ic

s
a
cr

o
ss

a
ll

th
e

fo
re

ca
st

in
g

h
o
ri

zo
n

s,
in

cl
u

d
in

g
a
s

w
el

l
th

e
a
cc

u
m

u
la

te
d

tw
el

ve
-m

on
th

h
or

iz
on

.
C

ol
u

m
n

s
(1

),
(2

)
an

d
(3

)
re

p
o
rt

th
e

av
er

a
g
e

ro
o
t

m
ea

n
sq

u
a
re

er
ro

r
(R

M
S

E
),

th
e

av
er

a
g
e

m
ea

n
a
b

so
lu

te
er

ro
r

(M
A

E
)

a
n

d

th
e

av
er

ag
e

m
ed

ia
n

ab
so

lu
te

d
ev

ia
ti

on
(M

A
D

).
C

o
lu

m
n

s
(4

),
(5

)
a
n

d
(6

)
re

p
o
rt

,
re

sp
ec

ti
ve

ly
,

th
e

n
u
m

b
er

o
f

ti
m

es
(a

cr
o
ss

h
o
ri

zo
n

s)
ea

ch
m

o
d

el

ac
h

ie
v
ed

th
e

lo
w

es
t

R
M

S
E

,
M

A
E

,
an

d
M

A
D

.
C

o
lu

m
n

s
(7

)–
(1

0
)

p
re

se
n
t,

fo
r

sq
u

a
re

a
n

d
a
b

so
lu

te
lo

ss
es

,
th

e
av

er
a
g
e
p
-v

a
lu

es
b

a
se

d
ei

th
er

o
n

th
e

ra
n
ge

or
th

e
t m

ax
st

at
is

ti
cs

as
d

es
cr

ib
ed

in
H

a
n

se
n

et
a
l.

(2
0
1
1
).

C
o
lu

m
n

s
(1

1
)

a
n

d
(1

2
)

sh
ow

th
e

av
er

a
g
e
p
-v

a
lu

es
o
f

th
e

S
u

p
er

io
r

P
re

d
ic

ti
v
e

A
b

il
it

y

(S
P

A
)

te
st

p
ro

p
os

ed
b
y

H
an

se
n

(2
00

5)
.

F
in

a
ll

y,
co

lu
m

n
s

(1
3
)

a
n

d
(1

4
)

d
is

p
la

y
th

e
p
-v

a
lu

e
o
f

th
e

m
u

lt
i-

h
o
ri

zo
n

te
st

fo
r

su
p

er
io

r
p

re
d

ic
ti

ve
a
b

il
it

y

p
ro

p
os

ed
b
y

Q
u

ae
d

v
li
eg

(2
01

7)
.

F
or

ec
as

ti
n
g

P
re

ci
si

on
M

o
d
el

C
on

fi
d
en

ce
S
et

S
u
p
.

P
re

d
.

A
b
il
it

y
M

u
lt

i-
H

or
iz

on
S
P

A
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
(1

3)
(1

4)
av

e.
av

e
av

e.
#

m
in

.
#

m
in

.
#

m
in

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
p
.v

.
p
.v

.
M

o
d
el

R
M

S
E

M
A

E
M

A
D

R
M

S
E

M
A

E
M

A
D

ra
n
ge

sq
ra

n
ge

ab
s

T
m

ax
sq

T
m

ax
ab

s
sq

ab
s

m
o
d
el

te
st

R
W

1.
00

0
1.

00
0

1.
00

0
0

0
0

0.
09

0
0.

00
2

0.
09

0
0.

00
4

0.
01

1
0.

00
0

0.
00

0
0.

00
0

A
R

0.
83

2
0.

80
5

0.
78

8
0

0
0

0.
33

2
0.

16
5

0.
54

3
0.

27
4

0.
08

2
0.

03
2

0.
00

0
0.

00
0

U
C

S
V

0.
84

1
0.

83
7

0.
84

2
0

0
0

0.
13

8
0.

04
1

0.
31

6
0.

14
4

0.
02

4
0.

00
7

0.
00

0
0.

00
0

L
A

S
S
O

0.
77

1
0.

73
3

0.
70

8
0

1
0

0.
47

0
0.

54
7

0.
80

2
0.

68
0

0.
30

9
0.

45
1

0.
88

7
0.

93
5

ad
aL

A
S
S
O

0.
78

6
0.

75
2

0.
70

8
0

0
3

0.
42

3
0.

43
0

0.
75

6
0.

61
6

0.
23

4
0.

24
5

0.
20

9
0.

20
9

E
lN

et
0.

76
7

0.
73

0
0.

70
8

0
0

0
0.

44
9

0.
54

1
0.

81
2

0.
69

9
0.

29
2

0.
48

5
0.

82
4

0.
93

5
ad

aE
ln

et
0.

78
5

0.
75

1
0.

71
5

0
0

0
0.

44
6

0.
43

6
0.

76
0

0.
61

5
0.

23
6

0.
22

0
0.

14
9

0.
14

9
R

id
ge

0.
76

3
0.

75
0

0.
70

6
0

0
0

0.
52

9
0.

58
4

0.
81

8
0.

64
5

0.
38

0
0.

41
7

0.
40

8
0.

40
8

B
V

A
R

0.
79

0
0.

75
0

0.
70

1
0

0
3

0.
40

5
0.

53
8

0.
76

7
0.

67
9

0.
20

9
0.

31
7

0.
20

0
0.

20
0

B
ag

gi
n
g

0.
78

9
0.

79
4

0.
78

2
0

0
2

0.
41

6
0.

27
8

0.
66

1
0.

35
9

0.
22

3
0.

10
5

0.
17

6
0.

17
6

C
S
R

0.
81

0
0.

77
8

0.
75

8
0

0
0

0.
43

1
0.

39
9

0.
65

7
0.

51
8

0.
18

8
0.

18
8

0.
01

3
0.

01
3

J
M

A
0.

83
0

0.
85

6
0.

88
3

0
0

0
0.

28
8

0.
07

4
0.

48
0

0.
15

3
0.

06
2

0.
00

6
0.

00
0

0.
00

0
F

ac
to

r
0.

83
4

0.
80

5
0.

76
5

0
0

0
0.

29
6

0.
10

3
0.

44
5

0.
23

4
0.

07
0

0.
02

4
0.

00
0

0.
00

0
T

.
F

ac
to

r
0.

80
9

0.
79

0
0.

77
1

0
0

0
0.

31
9

0.
12

9
0.

54
3

0.
26

2
0.

11
4

0.
05

0
0.

00
0

0.
00

0
B

o
os

ti
n
g

0.
82

6
0.

83
2

0.
82

9
0

0
0

0.
33

4
0.

22
8

0.
69

0
0.

40
7

0.
04

0
0.

02
9

0.
00

0
0.

00
0

R
F

0
.7

3
3

0
.7

0
0

0.
68

8
8

4
2

0
.7

6
8

0
.8

2
3

0
.9

3
4

0
.8

8
7

0
.8

6
3

0
.8

7
5

1
1

M
ea

n
0.

76
8

0.
73

6
0.

71
0

0
0

0
0.

59
1

0.
48

2
0.

81
8

0.
67

1
0.

42
4

0.
40

2
0.

87
6

0.
87

6
T

.M
ea

n
0.

76
6

0.
73

1
0.

71
4

0
0

0
0.

48
2

0.
61

6
0.

81
1

0.
69

3
0.

34
8

0.
62

2
0.

79
4

0.
93

5
M

ed
ia

n
0.

76
6

0.
73

1
0.

71
1

0
0

0
0.

50
7

0.
64

0
0.

81
6

0.
70

4
0.

39
7

0.
64

0
0.

86
8

0.
93

5
R

F
/O

L
S

0.
77

2
0.

75
4

0.
70

5
1

0
2

0.
54

0
0.

55
0

0.
82

6
0.

64
8

0.
34

3
0.

33
0

0.
93

5
0.

93
5

ad
aL

A
S
S
O

/R
F

0.
73

6
0.

70
5

0
.6

8
0

4
8

1
0.

70
6

0.
74

1
0.

87
8

0.
89

3
0.

77
4

0.
74

6
0.

91
0

0.
93

5

60



Table 24. Forecasting Errors for the PCE from 1990 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors

(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132

rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.

Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models

included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.

The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in

how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Personal Consumer Expenditure 1990–2015

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)

AR 0.89 0.83 0.82 0.84 0.82 0.80 0.79 0.78 0.82 0.84 0.87 0.80 0.96 7
(0.87) (0.81) (0.79) (0.83) (0.82) (0.81) (0.79) (0.75) (0.82) (0.84) (0.89) (0.82) (0.91) (3)

UCSV 0.94 0.86 0.84 0.86 0.84 0.83 0.83 0.82 0.83 0.84 0.86 0.83 0.85 5
(0.92) (0.86) (0.82) (0.85) (0.84) (0.83) (0.84) (0.82) (0.84) (0.84) (0.90) (0.83) (0.90) (0)

LASSO 0.83 0.78 0.75 0.79 0.78 0.78 0.78 0.77 0.81 0.82 0.84 0.76 0.79 9
(0.80) (0.77) (0.73) (0.80) (0.81) (0.79) (0.78) (0.73) (0.80) (0.81) (0.86) (0.77) (0.77) (7)

adaLASSO 0.84 0.79 0.77 0.80 0.79 0.78 0.78 0.79 0.82 0.82 0.84 0.76 0.83 9
(0.82) (0.78) (0.74) (0.80) (0.79) (0.77) (0.77) (0.74) (0.80) (0.80) (0.85) (0.77) (0.82) (6)

ElNet 0.83 0.78 0.75 0.79 0.78 0.78 0.77 0.77 0.81 0.82 0.85 0.76 0.79 9
(0.80) (0.77) (0.73) (0.81) (0.81) (0.80) (0.78) (0.74) (0.81) (0.81) (0.87) (0.78) (0.78) (6)

adaElnet 0.84 0.79 0.76 0.80 0.79 0.78 0.78 0.78 0.82 0.82 0.84 0.76 0.83 9
(0.83) (0.79) (0.74) (0.80) (0.80) (0.78) (0.77) (0.74) (0.80) (0.81) (0.86) (0.77) (0.81) (5)

Ridge 0.85 0.76 0.76 0.79 0.76 0.77 0.76 0.75 0.79 0.78 0.81 0.74 0.77 13
(0.83) (0.75) (0.73) (0.78) (0.79) (0.78) (0.75) (0.72) (0.79) (0.78) (0.83) (0.75) (0.77) (9)

BVAR 0.90 0.80 0.79 0.81 0.79 0.80 0.81 0.82 0.86 0.87 0.90 0.83 0.90 5
(0.89) (0.78) (0.79) (0.83) (0.83) (0.84) (0.83) (0.82) (0.89) (0.89) (0.94) (0.87) (0.89) (3)

Bagging 0.87 0.78 0.78 0.83 0.82 0.81 0.82 0.80 0.83 0.81 0.84 0.76 0.76 8
(0.86) (0.76) (0.76) (0.86) (0.90) (0.86) (0.83) (0.80) (0.86) (0.83) (0.88) (0.78) (0.82) (4)

CSR 0.85 0.78 0.77 0.80 0.78 0.79 0.79 0.78 0.82 0.84 0.87 0.81 0.90 11
(0.82) (0.78) (0.74) (0.80) (0.79) (0.78) (0.76) (0.73) (0.80) (0.82) (0.87) (0.81) (0.87) (8)

JMA 0.95 0.88 0.84 0.89 0.87 0.84 0.88 0.85 0.92 0.87 0.91 0.82 0.79 2
(0.94) (0.91) (0.85) (0.97) (0.97) (0.91) (0.91) (0.86) (0.97) (0.92) (0.95) (0.88) (0.83) (1)

Factor 0.89 0.84 0.83 0.84 0.83 0.84 0.83 0.83 0.87 0.87 0.89 0.85 0.95 0
(0.87) (0.84) (0.83) (0.84) (0.85) (0.85) (0.84) (0.81) (0.89) (0.88) (0.90) (0.88) (0.92) (0)

T. Factor 0.90 0.83 0.81 0.81 0.81 0.81 0.80 0.80 0.83 0.84 0.85 0.82 0.92 2
(0.91) (0.85) (0.82) (0.80) (0.83) (0.83) (0.81) (0.77) (0.84) (0.86) (0.87) (0.84) (0.90) (1)

Boosting 0.99 0.83 0.82 0.84 0.82 0.84 0.84 0.84 0.87 0.86 0.88 0.81 0.91 7
(1.00) (0.83) (0.83) (0.89) (0.89) (0.89) (0.88) (0.85) (0.91) (0.88) (0.92) (0.83) (1.02) (1)

RF 0.86 0.76 0.74 0.76 0.73 0.73 0.72 0.72 0.75 0.75 0.78 0.71 0.67 13
(0.82) (0.74) (0.73) (0.77) (0.77) (0.75) (0.72) (0.68) (0.73) (0.74) (0.78) (0.70) (0.63) (13)

Mean 0.84 0.77 0.76 0.78 0.77 0.77 0.76 0.75 0.78 0.78 0.80 0.75 0.80 13
(0.81) (0.77) (0.73) (0.78) (0.78) (0.77) (0.76) (0.71) (0.77) (0.77) (0.81) (0.75) (0.77) (10)

T.Mean 0.84 0.77 0.75 0.78 0.77 0.76 0.76 0.75 0.78 0.79 0.81 0.75 0.80 13
(0.81) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) (0.75) (0.77) (10)

Median 0.83 0.77 0.75 0.78 0.77 0.77 0.76 0.76 0.78 0.79 0.81 0.75 0.79 13
(0.81) (0.76) (0.73) (0.78) (0.78) (0.77) (0.75) (0.71) (0.77) (0.77) (0.82) (0.75) (0.77) (10)

RF/OLS 0.82 0.76 0.75 0.78 0.76 0.76 0.76 0.76 0.79 0.79 0.82 0.76 0.82 13
(0.80) (0.76) (0.73) (0.78) (0.78) (0.78) (0.75) (0.72) (0.79) (0.79) (0.85) (0.78) (0.82) (9)

adaLASSO/RF 0.85 0.79 0.75 0.76 0.74 0.74 0.72 0.72 0.76 0.76 0.80 0.74 0.70 13
(0.81) (0.78) (0.73) (0.78) (0.77) (0.75) (0.72) (0.68) (0.74) (0.76) (0.81) (0.73) (0.68) (11)

RMSE count 13 16 13 16 16 17 8 8 16 18 7 8 18
MAE count (10) (16) (13) (15) (14) (11) (7) (8) (1) (3) (1) (8) (10)

C.3. Additional Results: CPI-Core. In this section, we report forecasting results for

the Core of the Consumer Price Index. The CPI-Core series exhibits a dynamics quite

different from the other two inflation indexes reported before. More specifically there is

a clear seasonal patern in the series.
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Table 25. Forecasting Errors for the PCE from 1990 to 2000

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors

(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132

rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.

Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models

included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.

The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in

how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Personal Consumer Expenditure 1990–2000

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.84 0.80 0.86 0.82 0.79 0.80 0.83 0.84 0.90 0.86 0.95 0.92 0.82 12
(0.86) (0.79) (0.88) (0.85) (0.79) (0.84) (0.89) (0.80) (0.89) (0.90) (1.00) (0.98) (0.84) (11)

UCSV 0.89 0.85 0.86 0.88 0.85 0.84 0.86 0.87 0.89 0.87 0.90 0.89 1.04 12
(0.90) (0.84) (0.87) (0.88) (0.84) (0.85) (0.89) (0.86) (0.86) (0.87) (0.93) (0.89) (1.15) (11)

LASSO 0.83 0.83 0.86 0.89 0.85 0.88 0.89 0.89 0.96 0.88 0.95 0.88 0.78 8
(0.83) (0.82) (0.87) (0.94) (0.89) (0.93) (1.00) (0.86) (0.96) (0.91) (1.02) (0.95) (0.81) (6)

adaLASSO 0.84 0.84 0.86 0.85 0.81 0.83 0.86 0.88 0.93 0.83 0.90 0.87 0.82 10
(0.84) (0.83) (0.87) (0.87) (0.82) (0.85) (0.92) (0.83) (0.91) (0.85) (0.94) (0.92) (0.85) (11)

ElNet 0.80 0.83 0.87 0.90 0.86 0.89 0.92 0.91 0.95 0.88 1.00 0.91 0.80 7
(0.81) (0.83) (0.89) (0.97) (0.92) (0.96) (1.02) (0.88) (0.96) (0.92) (1.08) (0.98) (0.83) (2)

adaElnet 0.85 0.84 0.86 0.86 0.80 0.84 0.86 0.88 0.95 0.84 0.92 0.88 0.80 8
(0.86) (0.84) (0.87) (0.90) (0.82) (0.87) (0.93) (0.84) (0.93) (0.87) (0.97) (0.94) (0.83) (6)

Ridge 0.82 0.77 0.85 0.83 0.78 0.82 0.83 0.84 0.90 0.83 0.91 0.84 0.76 13
(0.82) (0.75) (0.86) (0.85) (0.82) (0.87) (0.90) (0.80) (0.90) (0.87) (0.96) (0.87) (0.80) (13)

BVAR 0.99 0.83 0.95 0.91 0.87 0.94 1.02 1.07 1.15 1.05 1.16 1.10 1.11 6
(1.00) (0.80) (1.00) (0.99) (0.95) (1.05) (1.14) (1.08) (1.22) (1.15) (1.29) (1.22) (1.17) (2)

Bagging 0.85 0.82 0.94 0.90 0.86 0.86 0.84 0.83 0.91 0.86 0.97 0.89 1.09 12
(0.85) (0.80) (0.95) (0.94) (0.93) (0.92) (0.91) (0.80) (0.90) (0.88) (1.00) (0.91) (1.19) (9)

CSR 0.83 0.83 0.86 0.81 0.76 0.78 0.80 0.81 0.87 0.83 0.90 0.85 0.81 13
(0.83) (0.81) (0.87) (0.83) (0.78) (0.80) (0.85) (0.76) (0.86) (0.86) (0.93) (0.89) (0.87) (13)

JMA 0.94 1.00 1.06 1.04 1.00 0.92 1.02 1.01 1.17 1.00 1.08 1.00 1.09 4
(0.97) (1.03) (1.10) (1.06) (1.06) (0.95) (1.11) (0.92) (1.15) (1.03) (1.06) (0.99) (1.16) (2)

Factor 0.89 0.89 0.96 0.88 0.86 0.92 0.91 0.92 1.05 0.98 1.05 1.04 0.96 3
(0.91) (0.89) (1.01) (0.89) (0.87) (0.95) (0.98) (0.89) (1.09) (1.04) (1.10) (1.13) (1.04) (1)

T. Factor 0.95 0.91 1.01 0.84 0.83 0.88 0.89 0.88 1.00 0.96 0.99 0.97 0.94 6
(0.96) (0.91) (1.07) (0.85) (0.84) (0.91) (0.98) (0.86) (1.01) (1.01) (1.03) (1.02) (1.02) (3)

Boosting 0.99 0.90 1.01 0.96 0.91 0.98 1.00 1.04 1.06 0.94 0.99 0.92 1.09 6
(1.03) (0.91) (1.09) (1.02) (0.97) (1.05) (1.09) (1.01) (1.06) (0.96) (1.03) (0.94) (1.30) (4)

RF 0.82 0.77 0.86 0.83 0.78 0.80 0.80 0.81 0.84 0.78 0.85 0.79 0.67 13
(0.82) (0.77) (0.90) (0.87) (0.81) (0.85) (0.85) (0.76) (0.82) (0.80) (0.90) (0.82) (0.63) (12)

Mean 0.82 0.79 0.84 0.82 0.78 0.80 0.81 0.81 0.88 0.82 0.87 0.84 0.74 13
(0.83) (0.79) (0.85) (0.84) (0.79) (0.83) (0.88) (0.77) (0.86) (0.84) (0.92) (0.88) (0.74) (13)

T.Mean 0.82 0.80 0.85 0.82 0.79 0.80 0.82 0.83 0.90 0.82 0.89 0.85 0.75 13
(0.83) (0.79) (0.86) (0.84) (0.80) (0.83) (0.89) (0.79) (0.88) (0.85) (0.94) (0.90) (0.76) (13)

Median 0.82 0.80 0.84 0.82 0.79 0.81 0.83 0.84 0.90 0.82 0.89 0.85 0.75 13
(0.83) (0.79) (0.85) (0.85) (0.81) (0.83) (0.89) (0.79) (0.89) (0.85) (0.94) (0.90) (0.76) (13)

RF/OLS 0.81 0.77 0.83 0.80 0.76 0.79 0.80 0.83 0.87 0.80 0.87 0.83 0.81 13
(0.81) (0.76) (0.84) (0.82) (0.79) (0.84) (0.87) (0.78) (0.86) (0.84) (0.93) (0.87) (0.89) (13)

adaLASSO/RF 0.81 0.89 0.91 0.87 0.81 0.82 0.84 0.81 0.85 0.79 0.90 0.84 0.71 11
(0.82) (0.87) (0.94) (0.90) (0.83) (0.87) (0.89) (0.77) (0.84) (0.83) (0.94) (0.87) (0.71) (10)

RMSE count 13 15 14 16 17 20 11 12 11 15 18 16 21
MAE count (12) (14) (11) (11) (13) (13) (11) (11) (12) (15) (18) (13) (16)

In Tables 27–??, we report for each model a number of different summary statistics

across all the forecasting horizons, including the accumulated twelve-month horizon for

the full out-of-sample period (1990–2015) as well as for the two subsamples considered,

namely, 1990–2000 and 2001–2015. Columns (1), (2) and (3) report the RMSE, the MAE
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Table 26. Forecasting Errors for the PCE from 2001 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors

(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132

rolling windows covering the 2001-2015 period and 180 rolling windows covering the 2001-2015 period.

Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models

included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.

The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in

how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Personal Consumer Expenditure 1990–2015

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0)

AR 0.91 0.84 0.81 0.84 0.82 0.80 0.79 0.77 0.80 0.83 0.85 0.77 0.99 8
(0.88) (0.82) (0.75) (0.82) (0.83) (0.79) (0.74) (0.72) (0.78) (0.81) (0.83) (0.74) (0.93) (0)

UCSV 0.96 0.86 0.84 0.86 0.83 0.83 0.82 0.81 0.82 0.83 0.85 0.81 0.81 3
(0.94) (0.87) (0.81) (0.84) (0.84) (0.83) (0.82) (0.81) (0.83) (0.83) (0.88) (0.80) (0.81) (1)

LASSO 0.83 0.77 0.73 0.77 0.76 0.76 0.75 0.75 0.78 0.80 0.81 0.73 0.79 13
(0.79) (0.74) (0.67) (0.74) (0.77) (0.72) (0.69) (0.68) (0.73) (0.76) (0.78) (0.68) (0.76) (11)

adaLASSO 0.84 0.77 0.74 0.78 0.78 0.77 0.76 0.77 0.79 0.81 0.83 0.73 0.83 13
(0.80) (0.76) (0.69) (0.77) (0.78) (0.74) (0.71) (0.70) (0.74) (0.78) (0.81) (0.70) (0.80) (10)

ElNet 0.84 0.76 0.72 0.76 0.76 0.75 0.74 0.74 0.78 0.80 0.81 0.72 0.78 13
(0.80) (0.74) (0.67) (0.73) (0.76) (0.72) (0.68) (0.67) (0.74) (0.76) (0.78) (0.68) (0.76) (12)

adaElnet 0.84 0.78 0.74 0.78 0.79 0.77 0.76 0.76 0.79 0.81 0.82 0.73 0.83 13
(0.81) (0.76) (0.68) (0.76) (0.78) (0.74) (0.71) (0.69) (0.75) (0.78) (0.81) (0.70) (0.80) (9)

Ridge 0.87 0.76 0.73 0.77 0.76 0.75 0.74 0.73 0.76 0.77 0.78 0.71 0.77 13
(0.84) (0.74) (0.67) (0.75) (0.78) (0.75) (0.69) (0.68) (0.74) (0.74) (0.76) (0.70) (0.76) (11)

BVAR 0.85 0.79 0.75 0.78 0.77 0.77 0.76 0.76 0.79 0.81 0.82 0.76 0.85 12
(0.83) (0.77) (0.70) (0.76) (0.77) (0.74) (0.69) (0.70) (0.75) (0.76) (0.78) (0.71) (0.80) (12)

Bagging 0.88 0.76 0.74 0.81 0.81 0.79 0.82 0.79 0.81 0.80 0.81 0.73 0.68 11
(0.87) (0.75) (0.69) (0.82) (0.88) (0.83) (0.80) (0.80) (0.84) (0.80) (0.82) (0.72) (0.70) (5)

CSR 0.86 0.77 0.75 0.79 0.79 0.79 0.79 0.77 0.81 0.84 0.86 0.80 0.92 10
(0.81) (0.76) (0.68) (0.79) (0.80) (0.77) (0.73) (0.71) (0.77) (0.81) (0.84) (0.77) (0.87) (6)

JMA 0.96 0.84 0.78 0.85 0.83 0.82 0.84 0.82 0.86 0.83 0.86 0.77 0.72 6
(0.92) (0.84) (0.75) (0.92) (0.93) (0.89) (0.82) (0.83) (0.89) (0.87) (0.91) (0.83) (0.73) (1)

Factor 0.89 0.83 0.80 0.83 0.82 0.81 0.81 0.81 0.83 0.83 0.84 0.80 0.95 4
(0.85) (0.82) (0.75) (0.82) (0.83) (0.80) (0.78) (0.77) (0.80) (0.80) (0.81) (0.77) (0.88) (1)

T. Factor 0.88 0.80 0.76 0.80 0.80 0.79 0.78 0.78 0.79 0.80 0.82 0.78 0.91 8
(0.88) (0.81) (0.72) (0.78) (0.82) (0.80) (0.74) (0.74) (0.77) (0.78) (0.80) (0.76) (0.86) (2)

Boosting 1.00 0.80 0.77 0.81 0.79 0.80 0.80 0.79 0.82 0.84 0.85 0.79 0.87 11
(0.98) (0.79) (0.73) (0.82) (0.84) (0.82) (0.79) (0.78) (0.85) (0.84) (0.87) (0.78) (0.93) (3)

RF 0.88 0.76 0.71 0.74 0.72 0.71 0.70 0.70 0.73 0.74 0.76 0.70 0.67 13
(0.82) (0.73) (0.66) (0.73) (0.74) (0.71) (0.67) (0.65) (0.70) (0.71) (0.72) (0.64) (0.63) (13)

Mean 0.85 0.76 0.74 0.77 0.77 0.76 0.75 0.74 0.76 0.77 0.78 0.72 0.81 13
(0.81) (0.75) (0.68) (0.75) (0.77) (0.74) (0.71) (0.68) (0.73) (0.73) (0.76) (0.69) (0.78) (11)

T.Mean 0.84 0.76 0.73 0.77 0.76 0.75 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.67) (0.75) (0.77) (0.73) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (12)

Median 0.84 0.76 0.73 0.77 0.76 0.76 0.74 0.74 0.76 0.78 0.79 0.72 0.80 13
(0.80) (0.75) (0.68) (0.75) (0.76) (0.74) (0.69) (0.67) (0.72) (0.74) (0.76) (0.68) (0.77) (13)

RF/OLS 0.83 0.76 0.74 0.78 0.76 0.76 0.75 0.74 0.77 0.78 0.81 0.74 0.82 13
(0.80) (0.75) (0.68) (0.76) (0.78) (0.75) (0.70) (0.69) (0.76) (0.77) (0.81) (0.74) (0.80) (11)

adaLASSO/RF 0.86 0.75 0.71 0.73 0.73 0.72 0.69 0.70 0.74 0.76 0.78 0.71 0.69 13
(0.81) (0.73) (0.65) (0.73) (0.74) (0.70) (0.66) (0.64) (0.70) (0.72) (0.75) (0.67) (0.67) (13)

RMSE count 15 16 18 17 20 16 15 15 18 20 17 13 16
MAE count (12) (15) (15) (9) (12) (12) (11) (13) (3) (16) (10) (13) (16)

and the MAD, respectively. In columns (4), (5) and (6) we report the number of times

(across horizons) each model achieved the lowest RMSE, MAE, and MAD, respectively.

Columns (7)–(10) present, for square and absolute losses, the average p-values based either

on the range or the tmax statistics as described in Hansen et al. (2011). Columns (11)
63



and (12) show the average p-values of the SPA test proposed by Hansen (2005). Finally,

columns (13) and (14) display the p-value of the multi-horizon test for superior predictive

ability proposed by Quaedvlieg (2017).

Tables 30–32 show the RMSE and, in parenthesis, the MAE for all models relative to

the RW. The error measures were calculated from 132 rolling windows covering the 1990-

2015 period and 180 rolling windows covering the 2001-2015 period. Values in bold show

the most accurate model in each horizon. Cells in gray (blue) show the models included

in the 50% MCS using the squared error (absolute error) as loss function. The MCSs

were constructed based on the maximum t statistic. The last column in the table reports

in how many horizons the row model was included in the MCS for square (absolute) loss.

The last two rows in the table report how many models were included in the MCS for

square and absolute losses.

64



T
a
b
l
e
2
7
.

F
or

ec
as

ti
n
g

R
es

u
lt

s
C

P
I-

C
or

e:
S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

th
e

ou
t-

of
-s

am
p
le

p
er

io
d

fr
om

19
90

–2
01

5

T
h

e
ta

b
le

re
p

or
ts

,
fo

r
ea

ch
m

o
d

el
,

a
n
u

m
b

er
o
f

d
iff

er
en

t
su

m
m

a
ry

st
a
ti

st
ic

s
a
cr

o
ss

a
ll

th
e

fo
re

ca
st

in
g

h
o
ri

zo
n

s,
in

cl
u

d
in

g
a
s

w
el

l
th

e
a
cc

u
m

u
la

te
d

tw
el

ve
-m

on
th

h
or

iz
on

.
C

ol
u

m
n

s
(1

),
(2

)
an

d
(3

)
re

p
o
rt

th
e

av
er

a
g
e

ro
o
t

m
ea

n
sq

u
a
re

er
ro

r
(R

M
S

E
),

th
e

av
er

a
g
e

m
ea

n
a
b

so
lu

te
er

ro
r

(M
A

E
)

a
n

d

th
e

av
er

ag
e

m
ed

ia
n

ab
so

lu
te

d
ev

ia
ti

on
(M

A
D

).
C

o
lu

m
n

s
(4

),
(5

)
a
n

d
(6

)
re

p
o
rt

,
re

sp
ec

ti
ve

ly
,

th
e

n
u
m

b
er

o
f

ti
m

es
(a

cr
o
ss

h
o
ri

zo
n

s)
ea

ch
m

o
d

el

ac
h

ie
v
ed

th
e

lo
w

es
t

R
M

S
E

,
M

A
E

,
an

d
M

A
D

.
C

o
lu

m
n

s
(7

)–
(1

0
)

p
re

se
n
t,

fo
r

sq
u

a
re

a
n

d
a
b

so
lu

te
lo

ss
es

,
th

e
av

er
a
g
e
p
-v

a
lu

es
b

a
se

d
ei

th
er

o
n

th
e

ra
n
ge

or
th

e
t m

ax
st

at
is

ti
cs

as
d

es
cr

ib
ed

in
H

a
n

se
n

et
a
l.

(2
0
1
1
).

C
o
lu

m
n

s
(1

1
)

a
n

d
(1

2
)

sh
ow

th
e

av
er

a
g
e
p
-v

a
lu

es
o
f

th
e

S
u

p
er

io
r

P
re

d
ic

ti
v
e

A
b

il
it

y

(S
P

A
)

te
st

p
ro

p
os

ed
b
y

H
an

se
n

(2
00

5)
.

F
in

a
ll

y,
co

lu
m

n
s

(1
3
)

a
n

d
(1

4
)

d
is

p
la

y
th

e
p
-v

a
lu

e
o
f

th
e

m
u

lt
i-

h
o
ri

zo
n

te
st

fo
r

su
p

er
io

r
p

re
d

ic
ti

ve
a
b

il
it

y

p
ro

p
os

ed
b
y

Q
u

ae
d

v
li
eg

(2
01

7)
.

F
or

ec
as

ti
n
g

P
re

ci
si

on
M

o
d
el

C
on

fi
d
en

ce
S
et

S
u
p
.

P
re

d
.

A
b
il
it

y
M

u
lt

i-
H

or
iz

on
S
P

A
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
(1

3)
(1

4)
av

e.
av

e
av

e.
#

m
in

.
#

m
in

.
#

m
in

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
p
.v

.
p
.v

.
M

o
d
el

R
M

S
E

M
A

E
M

A
D

R
M

S
E

M
A

E
M

A
D

ra
n
ge

sq
ra

n
ge

ab
s

T
m

ax
sq

T
m

ax
ab

s
sq

ab
s

m
o
d
el

te
st

R
W

1.
00

0
1.

00
0

1.
00

0
2

2
2

0.
04

6
0.

06
5

0.
15

9
0.

15
5

0.
14

1
0.

14
0

A
R

0.
83

5
0.

84
7

0.
74

7
0

0
0

0.
17

7
0.

12
0

0.
40

5
0.

32
4

0.
15

3
0.

09
0

U
C

S
V

0.
89

1
0.

88
7

0.
88

2
0

0
0

0.
08

0
0.

08
1

0.
10

0
0.

10
4

0.
00

1
0.

00
1

L
A

S
S
O

0.
88

2
0.

89
2

0.
78

0
0

0
0

0.
00

0
0.

00
0

0.
03

1
0.

01
8

0.
00

0
0.

00
0

ad
aL

A
S
S
O

0.
82

6
0.

81
7

0.
76

6
0

0
0

0.
03

7
0.

02
7

0.
19

2
0.

20
9

0.
02

0
0.

01
5

E
lN

et
0.

89
5

0.
90

5
0.

79
2

0
0

0
0.

00
0

0.
00

0
0.

03
0

0.
01

5
0.

00
0

0.
00

0
ad

aE
ln

et
0.

83
3

0.
83

0
0.

77
8

0
0

0
0.

00
8

0.
00

8
0.

14
1

0.
15

0
0.

00
3

0.
00

3
R

id
ge

0.
88

1
0.

89
0

0.
83

5
0

0
0

0.
00

2
0.

00
2

0.
06

8
0.

09
4

0.
00

0
0.

00
0

B
V

A
R

1.
12

6
1.

14
3

0.
93

7
0

0
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

B
ag

gi
n
g

0.
78

7
0.

76
5

0.
74

6
3

3
2

0.
38

7
0.

35
4

0.
60

7
0.

63
1

0.
38

6
0.

41
1

C
S
R

0.
80

0
0.

79
7

0.
73

2
1

0
1

0.
48

1
0.

46
9

0.
57

8
0.

52
3

0.
49

3
0.

41
4

J
M

A
0.

90
2

0.
87

1
0.

81
4

0
0

0
0.

01
3

0.
04

2
0.

10
7

0.
17

8
0.

00
2

0.
01

0
F

ac
to

r
0.

87
7

0.
87

8
0.

80
5

0
0

0
0.

03
4

0.
05

0
0.

21
9

0.
21

5
0.

00
8

0.
01

5
T

.
F

ac
to

r
0.

89
5

0.
89

4
0.

84
2

0
0

0
0.

06
7

0.
09

2
0.

26
8

0.
23

7
0.

01
1

0.
01

3
B

o
os

ti
n
g

1.
08

0
1.

09
9

1.
07

1
0

0
0

0.
00

1
0.

00
0

0.
01

1
0.

00
5

0.
00

0
0.

00
0

R
F

0
.7

4
9

0
.7

5
1

0
.6

8
1

6
5

6
0
.5

9
8

0
.6

0
5

0
.7

3
9

0
.7

2
5

0
.6

9
5

0
.6

6
5

M
ea

n
0.

79
2

0.
79

5
0.

74
2

0
0

0
0.

34
0

0.
22

8
0.

43
6

0.
39

1
0.

36
3

0.
29

3
T

.M
ea

n
0.

80
1

0.
80

6
0.

73
7

0
0

0
0.

11
6

0.
06

2
0.

29
5

0.
30

7
0.

12
2

0.
04

9
M

ed
ia

n
0.

80
3

0.
80

7
0.

73
4

0
0

0
0.

12
5

0.
08

3
0.

29
3

0.
31

4
0.

12
3

0.
08

0
R

F
/O

L
S

0.
77

7
0.

77
1

0.
74

6
0

0
0

0.
34

7
0.

33
5

0.
53

9
0.

52
6

0.
40

2
0.

37
7

ad
aL

A
S
S
O

/R
F

0.
77

1
0.

75
8

0.
70

0
1

3
2

0.
54

7
0.

58
8

0.
53

1
0.

61
0

0.
37

8
0.

46
4

65



T
a
b
l
e
2
8
.

F
or

ec
as

ti
n
g

R
es

u
lt

s
C

P
I-

C
or

e:
S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

th
e

ou
t-

of
-s

am
p
le

p
er

io
d

fr
om

19
90

–2
00

0

T
h

e
ta

b
le

re
p

or
ts

,
fo

r
ea

ch
m

o
d

el
,

a
n
u

m
b

er
o
f

d
iff

er
en

t
su

m
m

a
ry

st
a
ti

st
ic

s
a
cr

o
ss

a
ll

th
e

fo
re

ca
st

in
g

h
o
ri

zo
n

s,
in

cl
u

d
in

g
a
s

w
el

l
th

e
a
cc

u
m

u
la

te
d

tw
el

ve
-m

on
th

h
or

iz
on

.
C

ol
u

m
n

s
(1

),
(2

)
an

d
(3

)
re

p
o
rt

th
e

av
er

a
g
e

ro
o
t

m
ea

n
sq

u
a
re

er
ro

r
(R

M
S

E
),

th
e

av
er

a
g
e

m
ea

n
a
b

so
lu

te
er

ro
r

(M
A

E
)

a
n

d

th
e

av
er

ag
e

m
ed

ia
n

ab
so

lu
te

d
ev

ia
ti

on
(M

A
D

).
C

o
lu

m
n

s
(4

),
(5

)
a
n

d
(6

)
re

p
o
rt

,
re

sp
ec

ti
ve

ly
,

th
e

n
u
m

b
er

o
f

ti
m

es
(a

cr
o
ss

h
o
ri

zo
n

s)
ea

ch
m

o
d

el

ac
h

ie
v
ed

th
e

lo
w

es
t

R
M

S
E

,
M

A
E

,
an

d
M

A
D

.
C

o
lu

m
n

s
(7

)–
(1

0
)

p
re

se
n
t,

fo
r

sq
u

a
re

a
n

d
a
b

so
lu

te
lo

ss
es

,
th

e
av

er
a
g
e
p
-v

a
lu

es
b

a
se

d
ei

th
er

o
n

th
e

ra
n
ge

or
th

e
t m

ax
st

at
is

ti
cs

as
d

es
cr

ib
ed

in
H

a
n

se
n

et
a
l.

(2
0
1
1
).

C
o
lu

m
n

s
(1

1
)

a
n

d
(1

2
)

sh
ow

th
e

av
er

a
g
e
p
-v

a
lu

es
o
f

th
e

S
u

p
er

io
r

P
re

d
ic

ti
v
e

A
b

il
it

y

(S
P

A
)

te
st

p
ro

p
os

ed
b
y

H
an

se
n

(2
00

5)
.

F
in

a
ll

y,
co

lu
m

n
s

(1
3
)

a
n

d
(1

4
)

d
is

p
la

y
th

e
p
-v

a
lu

e
o
f

th
e

m
u

lt
i-

h
o
ri

zo
n

te
st

fo
r

su
p

er
io

r
p

re
d

ic
ti

ve
a
b

il
it

y

p
ro

p
os

ed
b
y

Q
u

ae
d

v
li
eg

(2
01

7)
.

F
or

ec
as

ti
n
g

P
re

ci
si

on
M

o
d
el

C
on

fi
d
en

ce
S
et

S
u
p
.

P
re

d
.

A
b
il
it

y
M

u
lt

i-
H

or
iz

on
S
P

A
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
(1

3)
(1

4)
av

e.
av

e
av

e.
#

m
in

.
#

m
in

.
#

m
in

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
p
.v

.
p
.v

.
M

o
d
el

R
M

S
E

M
A

E
M

A
D

R
M

S
E

M
A

E
M

A
D

ra
n
ge

sq
ra

n
ge

ab
s

T
m

ax
sq

T
m

ax
ab

s
sq

ab
s

m
o
d
el

te
st

R
W

1.
00

0
1.

00
0

1.
00

0
2

2
2

0.
07

6
0.

07
9

0.
18

8
0.

18
6

0.
14

9
0.

14
4

A
R

0.
87

2
0.

90
6

0.
77

4
0

0
0

0.
15

0
0.

10
9

0.
37

9
0.

31
8

0.
10

3
0.

06
2

U
C

S
V

0.
88

1
0.

88
8

0.
93

8
0

0
0

0.
08

6
0.

08
7

0.
15

6
0.

20
2

0.
00

2
0.

00
4

L
A

S
S
O

0.
90

6
0.

93
7

0.
80

4
0

0
0

0.
00

2
0.

00
2

0.
10

8
0.

12
0

0.
00

1
0.

00
3

ad
aL

A
S
S
O

0.
82

6
0.

83
5

0.
77

7
0

0
0

0.
10

9
0.

07
7

0.
32

4
0.

30
3

0.
08

6
0.

08
5

E
lN

et
0.

92
6

0.
95

9
0.

83
0

0
0

0
0.

00
1

0.
00

1
0.

12
0

0.
12

3
0.

00
0

0.
00

1
ad

aE
ln

et
0.

83
8

0.
85

7
0.

79
6

0
0

0
0.

06
6

0.
03

5
0.

24
4

0.
23

7
0.

03
9

0.
03

8
R

id
ge

0.
87

1
0.

89
4

0.
87

1
0

0
0

0.
04

6
0.

04
4

0.
20

0
0.

23
4

0.
04

8
0.

02
8

B
V

A
R

1.
25

2
1.

32
7

0.
86

7
0

0
0

0.
00

0
0.

00
0

0.
00

1
0.

00
1

0.
00

0
0.

00
0

B
ag

gi
n
g

0.
76

8
0
.7

5
2

0.
73

7
4

6
5

0.
31

7
0.

32
5

0.
68

1
0.

64
8

0.
45

7
0.

49
3

C
S
R

0.
78

2
0.

79
2

0.
69

7
4

1
4

0
.7

4
9

0
.7

4
5

0
.6

9
7

0
.6

8
7

0
.7

2
3

0
.6

5
2

J
M

A
0.

88
8

0.
86

7
0.

84
5

0
0

0
0.

09
1

0.
21

5
0.

29
4

0.
35

9
0.

04
3

0.
07

0
F

ac
to

r
0.

95
4

0.
97

1
0.

86
9

0
0

0
0.

06
9

0.
10

2
0.

22
5

0.
22

5
0.

01
0

0.
02

8
T

.
F

ac
to

r
1.

01
9

1.
05

5
0.

84
1

0
0

0
0.

04
4

0.
05

6
0.

18
3

0.
14

8
0.

00
6

0.
00

6
B

o
os

ti
n
g

1.
07

5
1.

09
3

1.
01

4
0

0
0

0.
03

1
0.

06
0

0.
09

5
0.

13
8

0.
00

1
0.

00
4

R
F

0
.7

6
7

0.
78

2
0.

70
9

3
2

1
0.

52
1

0.
47

8
0.

68
7

0.
61

7
0.

59
4

0.
54

2
M

ea
n

0.
82

2
0.

84
2

0.
75

3
0

0
0

0.
16

5
0.

14
2

0.
39

6
0.

30
9

0.
21

0
0.

17
1

T
.M

ea
n

0.
82

9
0.

85
2

0.
75

4
0

0
0

0.
08

2
0.

07
1

0.
38

3
0.

27
1

0.
05

6
0.

06
6

M
ed

ia
n

0.
82

8
0.

85
0

0.
75

1
0

0
0

0.
07

9
0.

12
6

0.
36

3
0.

26
6

0.
06

4
0.

11
1

R
F

/O
L

S
0.

77
7

0.
78

4
0.

74
2

0
0

0
0.

30
1

0.
30

9
0.

54
3

0.
47

9
0.

34
2

0.
37

0
ad

aL
A

S
S
O

/R
F

0.
78

5
0.

77
5

0
.7

3
3

0
2

1
0.

49
2

0.
57

6
0.

59
4

0.
63

5
0.

42
4

0.
51

7

66



T
a
b
l
e
2
9
.

F
or

ec
as

ti
n
g

R
es

u
lt

s
C

P
I-

C
or

e:
S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

th
e

ou
t-

of
-s

am
p
le

p
er

io
d

fr
om

20
01

–2
01

5

T
h

e
ta

b
le

re
p

or
ts

,
fo

r
ea

ch
m

o
d

el
,

a
n
u

m
b

er
o
f

d
iff

er
en

t
su

m
m

a
ry

st
a
ti

st
ic

s
a
cr

o
ss

a
ll

th
e

fo
re

ca
st

in
g

h
o
ri

zo
n

s,
in

cl
u

d
in

g
a
s

w
el

l
th

e
a
cc

u
m

u
la

te
d

tw
el

ve
-m

on
th

h
or

iz
on

.
C

ol
u

m
n

s
(1

),
(2

)
an

d
(3

)
re

p
o
rt

th
e

av
er

a
g
e

ro
o
t

m
ea

n
sq

u
a
re

er
ro

r
(R

M
S

E
),

th
e

av
er

a
g
e

m
ea

n
a
b

so
lu

te
er

ro
r

(M
A

E
)

a
n

d

th
e

av
er

ag
e

m
ed

ia
n

ab
so

lu
te

d
ev

ia
ti

on
(M

A
D

).
C

o
lu

m
n

s
(4

),
(5

)
a
n

d
(6

)
re

p
o
rt

,
re

sp
ec

ti
ve

ly
,

th
e

n
u
m

b
er

o
f

ti
m

es
(a

cr
o
ss

h
o
ri

zo
n

s)
ea

ch
m

o
d

el

ac
h

ie
v
ed

th
e

lo
w

es
t

R
M

S
E

,
M

A
E

,
an

d
M

A
D

.
C

o
lu

m
n

s
(7

)–
(1

0
)

p
re

se
n
t,

fo
r

sq
u

a
re

a
n

d
a
b

so
lu

te
lo

ss
es

,
th

e
av

er
a
g
e
p
-v

a
lu

es
b

a
se

d
ei

th
er

o
n

th
e

ra
n
ge

or
th

e
t m

ax
st

at
is

ti
cs

as
d

es
cr

ib
ed

in
H

a
n

se
n

et
a
l.

(2
0
1
1
).

C
o
lu

m
n

s
(1

1
)

a
n

d
(1

2
)

sh
ow

th
e

av
er

a
g
e
p
-v

a
lu

es
o
f

th
e

S
u

p
er

io
r

P
re

d
ic

ti
v
e

A
b

il
it

y

(S
P

A
)

te
st

p
ro

p
os

ed
b
y

H
an

se
n

(2
00

5)
.

F
in

a
ll

y,
co

lu
m

n
s

(1
3
)

a
n

d
(1

4
)

d
is

p
la

y
th

e
p
-v

a
lu

e
o
f

th
e

m
u

lt
i-

h
o
ri

zo
n

te
st

fo
r

su
p

er
io

r
p

re
d

ic
ti

ve
a
b

il
it

y

p
ro

p
os

ed
b
y

Q
u

ae
d

v
li
eg

(2
01

7)
.

F
or

ec
as

ti
n
g

P
re

ci
si

on
M

o
d
el

C
on

fi
d
en

ce
S
et

S
u
p
.

P
re

d
.

A
b
il
it

y
M

u
lt

i-
H

or
iz

on
S
P

A
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
(1

3)
(1

4)
av

e.
av

e
av

e.
#

m
in

.
#

m
in

.
#

m
in

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
av

e
p
.v

.
av

e.
p
.v

.
av

e.
p
.v

.
p
.v

.
p
.v

.
M

o
d
el

R
M

S
E

M
A

E
M

A
D

R
M

S
E

M
A

E
M

A
D

ra
n
ge

sq
ra

n
ge

ab
s

T
m

ax
sq

T
m

ax
ab

s
sq

ab
s

m
o
d
el

te
st

R
W

1.
00

0
1.

00
0

1.
00

0
1

1
1

0.
10

0
0.

11
7

0.
13

9
0.

11
7

0.
13

9
0.

13
9

A
R

0.
80

4
0.

80
3

0.
71

2
0

0
1

0.
34

7
0.

38
9

0.
61

5
0.

59
1

0.
28

4
0.

29
1

U
C

S
V

0.
88

9
0.

88
8

0.
88

9
1

1
1

0.
13

8
0.

17
1

0.
26

7
0.

29
1

0.
07

9
0.

10
2

L
A

S
S
O

0.
86

0
0.

85
8

0.
76

1
0

0
0

0.
00

2
0.

00
6

0.
10

0
0.

09
6

0.
00

1
0.

00
0

ad
aL

A
S
S
O

0.
82

2
0.

80
3

0.
74

6
0

0
0

0.
19

9
0.

34
5

0.
38

5
0.

48
7

0.
09

7
0.

17
8

E
lN

et
0.

87
0

0.
86

5
0.

75
6

0
0

0
0.

00
0

0.
00

2
0.

08
5

0.
06

4
0.

00
0

0.
00

0
ad

aE
ln

et
0.

82
4

0.
80

8
0.

73
8

0
0

0
0.

10
2

0.
28

8
0.

32
8

0.
44

8
0.

04
9

0.
14

5
R

id
ge

0.
89

0
0.

88
8

0.
83

1
0

0
0

0.
00

7
0.

01
1

0.
10

4
0.

09
8

0.
00

0
0.

00
1

B
V

A
R

1.
01

7
1.

00
8

0.
82

8
0

0
0

0.
00

2
0.

00
0

0.
03

2
0.

01
4

0.
00

1
0.

00
0

B
ag

gi
n
g

0.
80

2
0.

77
6

0.
74

7
2

3
1

0.
57

2
0.

53
5

0.
70

2
0.

71
0

0.
41

0
0.

41
8

C
S
R

0.
81

4
0.

80
2

0.
75

3
0

0
0

0.
50

4
0.

50
8

0.
58

0
0.

62
6

0.
38

3
0.

35
8

J
M

A
0.

91
4

0.
87

5
0.

78
5

0
0

0
0.

11
0

0.
13

9
0.

22
0

0.
26

0
0.

01
9

0.
02

7
F

ac
to

r
0.

81
2

0.
80

9
0.

76
1

0
0

0
0.

23
5

0.
32

4
0.

48
3

0.
54

2
0.

15
7

0.
20

0
T

.
F

ac
to

r
0.

78
1

0.
77

4
0.

75
7

0
1

0
0.

55
4

0.
53

4
0.

72
5

0.
73

0
0.

43
5

0.
40

4
B

o
os

ti
n
g

1.
08

7
1.

10
5

1.
12

7
0

0
0

0.
00

6
0.

00
3

0.
04

0
0.

01
7

0.
00

0
0.

00
0

R
F

0
.7

3
6

0
.7

2
8

0
.6

7
6

5
6

7
0
.6

7
7

0
.7

5
8

0
.8

5
1

0
.8

7
2

0
.7

6
5

0
.8

2
7

M
ea

n
0.

76
8

0.
76

1
0.

71
0

2
0

0
0.

51
8

0.
56

9
0.

65
2

0.
67

0
0.

53
9

0.
57

1
T

.M
ea

n
0.

77
8

0.
77

3
0.

71
9

0
0

0
0.

22
7

0.
26

4
0.

56
3

0.
54

4
0.

20
9

0.
24

9
M

ed
ia

n
0.

78
2

0.
77

6
0.

71
9

0
0

0
0.

24
1

0.
29

7
0.

51
1

0.
55

2
0.

19
2

0.
26

6
R

F
/O

L
S

0.
77

5
0.

76
2

0.
74

0
0

0
0

0.
65

3
0.

63
0

0.
76

0
0.

75
9

0.
59

1
0.

54
3

ad
aL

A
S
S
O

/R
F

0.
75

9
0.

74
4

0.
68

3
2

1
2

0.
62

4
0.

71
3

0.
81

0
0.

80
1

0.
49

8
0.

60
0

67



Table 30. Forecasting Errors for the CPI-Core from 1990 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors

(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132

rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.

Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models

included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.

The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in

how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Consumer Price Index (Core) 1990–2015

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.87 0.69 0.59 0.62 0.79 0.93 0.90 0.68 0.47 0.49 0.67 1.21 1.96 4
(0.92) (0.70) (0.59) (0.62) (0.80) (0.91) (0.85) (0.63) (0.45) (0.49) (0.70) (1.27) (2.09) (2)

UCSV 0.96 0.80 0.76 0.77 0.86 0.96 0.93 0.84 0.76 0.73 0.82 1.38 1.02 1
(1.03) (0.80) (0.74) (0.76) (0.87) (0.93) (0.90) (0.80) (0.74) (0.74) (0.84) (1.38) (1.01) (1)

LASSO 0.85 0.66 0.62 0.69 0.86 0.97 0.90 0.72 0.54 0.58 0.80 1.39 1.90 0
(0.92) (0.66) (0.60) (0.68) (0.85) (0.93) (0.86) (0.68) (0.52) (0.57) (0.83) (1.43) (2.06) (0)

adaLASSO 0.84 0.65 0.59 0.66 0.84 0.94 0.89 0.73 0.51 0.52 0.72 1.24 1.64 0
(0.89) (0.65) (0.57) (0.65) (0.82) (0.90) (0.85) (0.68) (0.48) (0.51) (0.74) (1.27) (1.62) (1)

ElNet 0.86 0.67 0.61 0.68 0.86 0.98 0.89 0.72 0.55 0.59 0.83 1.46 1.94 0
(0.92) (0.67) (0.60) (0.67) (0.85) (0.94) (0.85) (0.68) (0.53) (0.58) (0.85) (1.49) (2.12) (0)

adaElnet 0.85 0.66 0.60 0.68 0.83 0.94 0.90 0.72 0.50 0.52 0.73 1.26 1.66 0
(0.90) (0.66) (0.58) (0.67) (0.82) (0.90) (0.85) (0.68) (0.48) (0.52) (0.75) (1.30) (1.69) (0)

Ridge 0.92 0.66 0.61 0.67 0.85 0.95 0.84 0.68 0.59 0.62 0.87 1.56 1.63 0
(0.99) (0.67) (0.60) (0.66) (0.85) (0.93) (0.81) (0.65) (0.58) (0.63) (0.92) (1.62) (1.69) (1)

BVAR 0.91 0.71 0.70 0.79 1.01 1.13 1.01 0.83 0.75 0.80 1.10 1.93 2.97 0
(0.97) (0.71) (0.67) (0.76) (0.99) (1.08) (0.96) (0.79) (0.73) (0.80) (1.15) (1.99) (3.26) (0)

Bagging 0.81 0.57 0.55 0.67 0.91 0.96 0.81 0.65 0.48 0.50 0.71 1.28 1.33 7
(0.81) (0.56) (0.52) (0.65) (0.87) (0.88) (0.77) (0.62) (0.46) (0.49) (0.73) (1.28) (1.31) (7)

CSR 0.82 0.65 0.57 0.62 0.78 0.89 0.85 0.66 0.46 0.48 0.65 1.21 1.77 8
(0.86) (0.65) (0.56) (0.60) (0.77) (0.87) (0.82) (0.61) (0.45) (0.47) (0.68) (1.25) (1.78) (7)

JMA 0.91 0.68 0.68 0.75 1.05 1.06 0.96 0.74 0.57 0.55 0.82 1.45 1.50 0
(0.92) (0.65) (0.65) (0.74) (0.98) (0.99) (0.91) (0.68) (0.53) (0.53) (0.81) (1.46) (1.48) (2)

Factor 0.90 0.71 0.62 0.68 0.86 0.96 0.90 0.73 0.47 0.52 0.73 1.26 2.07 1
(0.95) (0.71) (0.61) (0.67) (0.87) (0.93) (0.86) (0.68) (0.46) (0.51) (0.75) (1.29) (2.13) (1)

T. Factor 0.90 0.72 0.64 0.69 0.86 0.97 0.92 0.75 0.47 0.51 0.71 1.25 2.25 1
(0.94) (0.72) (0.62) (0.68) (0.86) (0.95) (0.88) (0.69) (0.47) (0.51) (0.75) (1.31) (2.25) (2)

Boosting 0.94 0.70 0.69 0.79 1.02 1.10 0.98 0.77 0.64 0.72 0.99 1.67 3.03 0
(1.00) (0.70) (0.67) (0.78) (1.02) (1.07) (0.94) (0.75) (0.64) (0.73) (1.05) (1.74) (3.19) (0)

RF 0.84 0.61 0.56 0.62 0.78 0.87 0.80 0.64 0.43 0.45 0.63 1.14 1.36 9
(0.89) (0.61) (0.54) (0.60) (0.78) (0.84) (0.77) (0.61) (0.42) (0.45) (0.66) (1.16) (1.45) (10)

Mean 0.81 0.64 0.58 0.64 0.79 0.88 0.81 0.66 0.50 0.52 0.69 1.19 1.59 5
(0.86) (0.63) (0.57) (0.63) (0.79) (0.86) (0.78) (0.62) (0.49) (0.52) (0.72) (1.22) (1.66) (4)

T.Mean 0.83 0.64 0.58 0.63 0.79 0.89 0.83 0.67 0.49 0.51 0.70 1.21 1.64 2
(0.88) (0.65) (0.57) (0.63) (0.79) (0.87) (0.80) (0.63) (0.47) (0.51) (0.72) (1.24) (1.73) (3)

Median 0.83 0.65 0.58 0.64 0.79 0.89 0.84 0.68 0.49 0.51 0.70 1.22 1.64 2
(0.88) (0.65) (0.57) (0.63) (0.79) (0.87) (0.80) (0.64) (0.47) (0.51) (0.72) (1.25) (1.73) (3)

RF/OLS 0.82 0.63 0.57 0.64 0.80 0.89 0.81 0.65 0.46 0.48 0.66 1.19 1.51 7
(0.88) (0.63) (0.55) (0.62) (0.80) (0.86) (0.77) (0.61) (0.44) (0.48) (0.69) (1.22) (1.48) (5)

adaLASSO/RF 0.84 0.62 0.56 0.61 0.78 0.91 0.89 0.69 0.45 0.46 0.65 1.16 1.40 7
(0.89) (0.62) (0.54) (0.60) (0.76) (0.86) (0.82) (0.64) (0.43) (0.45) (0.66) (1.15) (1.43) (9)

RMSE count 3 1 5 4 8 8 4 5 8 2 5 1 2
MAE count (10) (1) (3) (3) (3) (8) (4) (12) (8) (2) (3) (1) (2)
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Table 31. Forecasting Errors for the CPI-Core from 1990 to 2000

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors

(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132

rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.

Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models

included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.

The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in

how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Consumer Price Index (Core) 1990–2000

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.88 0.69 0.59 0.62 0.79 0.96 0.91 0.71 0.50 0.54 0.71 1.26 2.16 5
(0.92) (0.70) (0.58) (0.62) (0.82) (0.96) (0.90) (0.65) (0.48) (0.53) (0.76) (1.43) (2.38) (3)

UCSV 0.91 0.68 0.64 0.72 0.90 1.04 0.91 0.75 0.66 0.68 0.90 1.61 1.06 1
(0.98) (0.67) (0.60) (0.69) (0.93) (1.02) (0.91) (0.70) (0.61) (0.70) (0.95) (1.75) (1.03) (1)

LASSO 0.85 0.65 0.61 0.67 0.87 1.01 0.91 0.73 0.59 0.63 0.87 1.44 1.91 0
(0.91) (0.64) (0.58) (0.65) (0.88) (0.98) (0.90) (0.68) (0.56) (0.63) (0.92) (1.59) (2.18) (1)

adaLASSO 0.85 0.63 0.56 0.63 0.83 0.97 0.90 0.75 0.56 0.56 0.77 1.27 1.39 3
(0.90) (0.63) (0.53) (0.61) (0.83) (0.95) (0.90) (0.70) (0.53) (0.56) (0.80) (1.38) (1.47) (3)

ElNet 0.85 0.66 0.61 0.68 0.87 1.02 0.90 0.73 0.59 0.64 0.89 1.55 2.00 0
(0.91) (0.65) (0.58) (0.66) (0.88) (0.99) (0.90) (0.67) (0.56) (0.65) (0.94) (1.70) (2.30) (0)

adaElnet 0.85 0.64 0.58 0.65 0.82 0.97 0.90 0.74 0.55 0.57 0.79 1.32 1.47 1
(0.91) (0.64) (0.54) (0.63) (0.83) (0.95) (0.90) (0.69) (0.52) (0.58) (0.83) (1.45) (1.61) (1)

Ridge 0.88 0.65 0.60 0.66 0.84 0.99 0.85 0.69 0.59 0.63 0.86 1.51 1.52 1
(0.95) (0.65) (0.57) (0.63) (0.85) (0.97) (0.85) (0.65) (0.58) (0.65) (0.92) (1.62) (1.66) (1)

BVAR 0.91 0.72 0.72 0.84 1.09 1.28 1.10 0.90 0.81 0.88 1.19 2.04 3.73 0
(0.97) (0.71) (0.68) (0.80) (1.10) (1.26) (1.10) (0.85) (0.79) (0.90) (1.27) (2.26) (4.49) (0)

Bagging 0.77 0.57 0.55 0.65 0.82 0.93 0.79 0.65 0.52 0.56 0.74 1.19 1.22 8
(0.79) (0.55) (0.50) (0.62) (0.82) (0.87) (0.77) (0.59) (0.47) (0.54) (0.74) (1.25) (1.19) (9)

CSR 0.81 0.65 0.55 0.59 0.76 0.90 0.83 0.66 0.47 0.49 0.66 1.15 1.56 10
(0.85) (0.64) (0.53) (0.57) (0.77) (0.89) (0.82) (0.61) (0.45) (0.48) (0.67) (1.22) (1.68) (10)

JMA 0.85 0.72 0.62 0.73 1.00 1.11 0.96 0.70 0.58 0.57 0.78 1.44 1.40 2
(0.86) (0.68) (0.58) (0.71) (0.95) (1.04) (0.92) (0.63) (0.54) (0.56) (0.77) (1.54) (1.41) (3)

Factor 0.88 0.75 0.65 0.70 0.89 1.04 0.93 0.82 0.52 0.57 0.78 1.36 2.49 1
(0.91) (0.74) (0.61) (0.68) (0.91) (1.03) (0.92) (0.77) (0.50) (0.57) (0.82) (1.48) (2.63) (0)

T. Factor 0.92 0.81 0.72 0.74 0.91 1.07 0.99 0.86 0.52 0.58 0.78 1.35 2.91 1
(0.96) (0.80) (0.69) (0.72) (0.94) (1.08) (0.99) (0.81) (0.51) (0.59) (0.83) (1.53) (3.14) (0)

Boosting 0.92 0.69 0.68 0.80 1.03 1.15 0.97 0.77 0.63 0.73 0.96 1.55 2.96 0
(0.98) (0.69) (0.66) (0.77) (1.05) (1.13) (0.96) (0.72) (0.62) (0.74) (1.03) (1.70) (2.93) (0)

RF 0.83 0.61 0.56 0.62 0.79 0.92 0.82 0.67 0.46 0.48 0.64 1.14 1.40 10
(0.90) (0.61) (0.54) (0.60) (0.79) (0.90) (0.81) (0.62) (0.43) (0.47) (0.67) (1.22) (1.57) (8)

Mean 0.81 0.64 0.58 0.63 0.80 0.93 0.83 0.69 0.53 0.56 0.74 1.24 1.65 4
(0.86) (0.63) (0.55) (0.61) (0.82) (0.92) (0.83) (0.64) (0.51) (0.56) (0.77) (1.35) (1.81) (2)

T.Mean 0.82 0.65 0.58 0.63 0.80 0.94 0.84 0.69 0.52 0.55 0.74 1.26 1.68 4
(0.87) (0.64) (0.55) (0.62) (0.82) (0.93) (0.84) (0.64) (0.50) (0.56) (0.78) (1.38) (1.86) (2)

Median 0.83 0.65 0.58 0.63 0.80 0.93 0.85 0.69 0.52 0.56 0.74 1.26 1.66 4
(0.88) (0.64) (0.56) (0.62) (0.81) (0.92) (0.84) (0.64) (0.50) (0.56) (0.78) (1.39) (1.83) (2)

RF/OLS 0.83 0.63 0.56 0.62 0.79 0.93 0.83 0.68 0.49 0.50 0.68 1.18 1.35 7
(0.89) (0.63) (0.53) (0.59) (0.80) (0.90) (0.83) (0.64) (0.46) (0.50) (0.69) (1.24) (1.42) (7)

adaLASSO/RF 0.85 0.64 0.55 0.61 0.77 0.93 0.91 0.72 0.49 0.49 0.66 1.17 1.37 7
(0.93) (0.64) (0.51) (0.58) (0.77) (0.89) (0.87) (0.65) (0.43) (0.47) (0.66) (1.21) (1.39) (8)

RMSE count 9 1 8 6 9 8 3 10 8 3 3 1 2
MAE count (3) (13) (5) (7) (5) (5) (1) (9) (6) (3) (3) (1) (2)
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Table 32. Forecasting Errors for the CPI-Core from 2001 to 2015

The table shows the root mean squared error (RMSE) and, between parenthesis, the mean absolute errors

(MAE) for all models relative to the Random Walk (RW). The error measures were calculated from 132

rolling windows covering the 1990-2015 period and 180 rolling windows covering the 2001-2015 period.

Values in bold show the most accurate model in each horizon. Cells in gray (blue) show the models

included in the 50% model confidence set (MCS) using the squared error (absolute error) as loss function.

The MCSs were constructed based on the maximum t-statistic. The last column in the table reports in

how many horizons the row model was included in the MCS for square (absolute) loss. The last two rows

in the table reports how many models were included in the MCS for square and absolute losses.
Consumer Price Index (Core) 1990–2015

Forecasting Horizon
RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 Acc. RMSE count

(MAE count)

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2)

AR 0.86 0.68 0.60 0.62 0.79 0.90 0.89 0.66 0.43 0.45 0.62 1.16 1.80 8
(0.91) (0.69) (0.59) (0.63) (0.78) (0.87) (0.81) (0.61) (0.43) (0.45) (0.66) (1.15) (1.90) (8)

UCSV 1.00 0.90 0.85 0.81 0.83 0.89 0.94 0.90 0.84 0.78 0.74 1.09 0.99 4
(1.07) (0.91) (0.85) (0.82) (0.82) (0.87) (0.90) (0.87) (0.84) (0.77) (0.75) (1.09) (1.00) (4)

LASSO 0.86 0.66 0.62 0.71 0.85 0.94 0.89 0.71 0.49 0.53 0.73 1.34 1.85 0
(0.92) (0.68) (0.62) (0.71) (0.84) (0.90) (0.82) (0.69) (0.49) (0.52) (0.75) (1.31) (1.98) (0)

adaLASSO 0.84 0.66 0.60 0.69 0.85 0.91 0.88 0.71 0.45 0.48 0.66 1.20 1.74 4
(0.88) (0.66) (0.60) (0.69) (0.82) (0.87) (0.81) (0.67) (0.44) (0.46) (0.69) (1.18) (1.72) (7)

ElNet 0.87 0.68 0.62 0.69 0.85 0.95 0.88 0.72 0.52 0.54 0.76 1.37 1.86 0
(0.94) (0.69) (0.62) (0.69) (0.83) (0.91) (0.82) (0.68) (0.51) (0.52) (0.78) (1.32) (2.00) (0)

adaElnet 0.84 0.67 0.62 0.70 0.84 0.91 0.89 0.71 0.45 0.48 0.67 1.20 1.74 3
(0.89) (0.68) (0.61) (0.70) (0.81) (0.87) (0.81) (0.67) (0.44) (0.47) (0.69) (1.17) (1.74) (6)

Ridge 0.95 0.68 0.62 0.68 0.86 0.92 0.84 0.68 0.58 0.61 0.87 1.61 1.67 0
(1.01) (0.68) (0.62) (0.68) (0.85) (0.90) (0.78) (0.66) (0.58) (0.61) (0.92) (1.61) (1.70) (1)

BVAR 0.91 0.71 0.68 0.75 0.93 1.00 0.93 0.76 0.69 0.73 1.02 1.81 2.29 0
(0.97) (0.70) (0.66) (0.73) (0.90) (0.95) (0.86) (0.74) (0.69) (0.73) (1.05) (1.78) (2.49) (0)

Bagging 0.84 0.58 0.55 0.69 0.98 0.99 0.82 0.66 0.45 0.46 0.68 1.36 1.38 10
(0.83) (0.57) (0.54) (0.67) (0.92) (0.88) (0.77) (0.64) (0.44) (0.45) (0.71) (1.30) (1.39) (10)

CSR 0.82 0.65 0.59 0.64 0.80 0.88 0.87 0.66 0.45 0.47 0.65 1.27 1.84 8
(0.87) (0.65) (0.59) (0.63) (0.78) (0.85) (0.81) (0.62) (0.44) (0.46) (0.68) (1.27) (1.85) (8)

JMA 0.97 0.65 0.72 0.77 1.09 1.02 0.96 0.77 0.57 0.53 0.86 1.46 1.52 1
(0.97) (0.63) (0.70) (0.77) (1.00) (0.95) (0.91) (0.72) (0.52) (0.50) (0.85) (1.40) (1.53) (2)

Factor 0.91 0.68 0.60 0.65 0.84 0.90 0.88 0.65 0.43 0.48 0.68 1.15 1.71 6
(0.98) (0.70) (0.60) (0.66) (0.83) (0.87) (0.82) (0.60) (0.43) (0.47) (0.70) (1.14) (1.81) (7)

T. Factor 0.88 0.63 0.57 0.64 0.81 0.89 0.86 0.63 0.42 0.45 0.63 1.13 1.61 10
(0.92) (0.65) (0.57) (0.64) (0.80) (0.85) (0.80) (0.59) (0.43) (0.45) (0.67) (1.13) (1.70) (10)

Boosting 0.96 0.71 0.69 0.79 1.01 1.07 0.99 0.78 0.65 0.72 1.00 1.78 2.99 0
(1.01) (0.71) (0.68) (0.79) (1.00) (1.03) (0.93) (0.78) (0.66) (0.73) (1.07) (1.78) (3.35) (0)

RF 0.86 0.61 0.55 0.62 0.78 0.83 0.78 0.62 0.41 0.43 0.62 1.13 1.32 11
(0.88) (0.61) (0.54) (0.61) (0.76) (0.79) (0.73) (0.60) (0.41) (0.43) (0.65) (1.10) (1.38) (12)

Mean 0.81 0.63 0.58 0.64 0.78 0.84 0.80 0.64 0.47 0.49 0.65 1.14 1.51 8
(0.86) (0.64) (0.58) (0.64) (0.77) (0.81) (0.74) (0.61) (0.46) (0.48) (0.67) (1.12) (1.56) (9)

T.Mean 0.83 0.64 0.58 0.64 0.78 0.86 0.82 0.66 0.46 0.48 0.65 1.16 1.58 7
(0.88) (0.65) (0.58) (0.64) (0.77) (0.83) (0.76) (0.63) (0.45) (0.47) (0.67) (1.13) (1.64) (8)

Median 0.83 0.64 0.58 0.64 0.79 0.86 0.83 0.66 0.46 0.48 0.65 1.16 1.60 5
(0.88) (0.66) (0.58) (0.64) (0.77) (0.83) (0.77) (0.63) (0.45) (0.47) (0.67) (1.14) (1.66) (8)

RF/OLS 0.82 0.63 0.57 0.65 0.81 0.86 0.79 0.63 0.44 0.46 0.65 1.20 1.57 11
(0.86) (0.63) (0.57) (0.65) (0.80) (0.83) (0.73) (0.60) (0.42) (0.46) (0.68) (1.20) (1.51) (10)

adaLASSO/RF 0.83 0.61 0.57 0.62 0.80 0.89 0.86 0.66 0.42 0.43 0.64 1.16 1.39 11
(0.86) (0.61) (0.56) (0.61) (0.76) (0.84) (0.79) (0.63) (0.42) (0.42) (0.66) (1.11) (1.45) (11)

RMSE count 9 6 5 11 10 14 4 10 9 7 13 9 2
MAE count (9) (4) (5) (11) (12) (14) (8) (9) (10) (14) (13) (12) (2)
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